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We define and investigate Frege systems for quantified Boolean formulas (QBF). For these new proof systems

we develop a lower bound technique that directly lifts circuit lower bounds for a circuit class C to the QBF
Frege system operating with lines from C . Such a direct transfer from circuit to proof complexity lower

bounds has often been postulated for propositional systems, but had not been formally established in such

generality for any proof systems prior to this work.
This leads to strong lower bounds for restricted versions of QBF Frege, in particular an exponential lower

bound for QBF Frege systems operating with AC0[p] circuits. In contrast, any non-trivial lower bound for
propositional AC0[p]-Frege constitutes a major open problem.

Improving these lower bounds to unrestricted QBF Frege tightly corresponds to the major problems in

circuit complexity and propositional proof complexity. In particular, proving a lower bound for QBF Frege
systems operating with arbitrary P/poly circuits is equivalent to either showing a lower bound for P/poly
or for propositional extended Frege (which operates with P/poly circuits).

We also compare our new QBF Frege systems to standard sequent calculi for QBF and establish a
correspondence to intuitionistic bounded arithmetic.
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1. INTRODUCTION
Proof complexity investigates how difficult it is to prove theorems in different formal
systems. The main question asks, given a formula ϕ and a proof system P , typically
comprised of axioms and rules, what is the size of the smallest proof of ϕ in P . This
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question bears tight and fruitful relations to a number of further areas, in particular to
computational complexity, where lower bounds to the size of proofs offer an approach
towards the separation of complexity classes (Cook’s Programme), and to first-order
logic (bounded arithmetic theories and their separations). More recently, the tremen-
dous success of SAT solving has been a main driver for proof complexity, as the analy-
sis of proof systems underlying SAT solvers provides the main theoretical framework
towards understanding the power and limitations of solving, cf. the survey by Buss
[2012].

The bulk of research in proof complexity has concentrated on proof systems for classi-
cal propositional logic. Regarding the central question above, propositional proof com-
plexity has made enormous progress over the past three decades in showing tight lower
and upper bounds for many principles in various proof systems. Arguably even more
important, a number of general lower bound techniques have been developed that can
be employed to show lower bounds to the size of proofs. These include the seminal
size-width relationship by Ben-Sasson and Wigderson [2001], the feasible interpola-
tion technique of Krajı́ček [1997], or game-theoretic techniques (cf. the overview in
[Beyersdorff and Kullmann 2014]).

Notwithstanding these advances, some of the most natural proof systems have re-
sisted all attempts for lower bounds for decades. Frege systems (also known as Hilbert-
type systems) are the typical textbook calculi comprised of axiom schemes and rules,
and no non-trivial lower bounds are known for Frege. While the power of Frege does not
depend on the choice of axioms or rules [Cook and Reckhow 1979], their strength can
be calibrated by restricting the class of allowed formulas.

In particular, a hierarchy of Frege systems can be obtained by considering Boolean
circuits of increasing strength as lines in Frege. These circuit classes comprise the
standard non-uniform classes: AC0, which is the class of Boolean functions computed
by families of polynomial-size constant-depth circuits with unbounded fan-in; AC0[p],
which is similar to AC0 but allows mod-p gates; and TC0, which additionally allows
threshold gates. Even stronger, NC1 comprises of the class of Boolean functions com-
puted by families of polynomial-size logarithmic-depth circuits with bounded fan-in
and P/poly of functions with polynomial-size circuits in general. For uniform families
of circuits, one further imposes the condition that the circuit family can be generated
efficiently. Here we typically consider non-uniform families, where we just require ex-
istence of the family of small circuits as above. This is analogous to the non-uniform
model in proof complexity, where again only the existence of small proofs for a sequence
of formulas is required. The circuit classes are ordered as AC0 ⊂ AC0[p] ⊂ TC0 ⊆ NC1 ⊆
P/poly, giving rise to a similar hierarchy of Frege systems.

While the strongest non-uniform lower bounds known in circuit complexity hold
for the class AC0[p] [Razborov 1987; Smolensky 1987], AC0-Frege is the strongest of
the above Frege systems with non-trivial lower bounds [Ajtai 1994; Krajı́ček et al.
1995; Pitassi et al. 1993]. Despite enormous efforts, all attempts to transfer Razborov’s
and Smolensky’s AC0[p] circuit lower to a proof size lower bound in AC0[p]-Frege have
failed so far. More widely, it seems the common belief in the proof complexity com-
munity that substantial progress in circuit complexity would also give rise to major
new lower bounds in proof complexity, for Frege (= NC1-Frege) or even extended Frege
(EF = P/poly-Frege). Though this connection has been often postulated (cf. e.g. [Beame
and Pitassi 2001]), it could never have been made formal so far.

In this paper we establish a technique to transfer circuit lower bounds to proof size
lower bounds for proof systems for quantified Boolean formulas (QBF). Our technique
lifts arbitrary circuit lower bounds to proof size bounds for QBF Frege systems, yielding
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in particular exponential lower bounds for AC0[p]-Frege for QBFs via [Razborov 1987;
Smolensky 1987].

Before explaining our results in more detail, we discuss recent developments in QBF
proof complexity.

QBF proof complexity is a relatively young field studying proof systems for quanti-
fied Boolean logic. Similarly as in the propositional case, one of the main motivations
for the field comes via its intimate connection to solving. SAT and QBF solvers are
powerful algorithms that efficiently solve the classically hard problems of SAT and
QBF for large classes of practically relevant formulas, with modern solvers routinely
solving industrial instances in millions of variables for various applications. Although
QBF solving is at an earlier state, due to its PSPACE completeness, QBF even applies
to further fields such as formal verification or planning [Benedetti and Mangassarian
2008; Egly et al. 2017; Rintanen 2007].

The connection to proof complexity comes from the fact that each successful run of
a solver on an unsatisfiable instance can be interpreted as a proof of unsatisfiability;
and modern SAT and QBF solvers (that are sound and complete) are known to cor-
respond to the resolution proof system and its variants. In comparison to SAT, the
picture is more complex in QBF as there exist two main solving approaches: utilis-
ing CDCL (conflict-driven clause learning) and expansion-based solving. To model the
strength of these QBF solvers, a number of resolution-based QBF proof systems have
been developed. Q-resolution (Q-Res) by Kleine Büning et al. [1995] forms the core of
the CDCL-based systems. To capture further ideas from CDCL solving, Q-Res has been
augmented to long-distance resolution by Balabanov and Jiang [2012], universal res-
olution QU-Res by Van Gelder [2012], and their combinations [Balabanov et al. 2014].
QBF resolution systems for expansion-based solving were developed by Janota and
Marques-Silva [2015] and Beyersdorff et al. [2014]. Recent progress led to a complete
understanding of the relative power of all these resolution-type QBF systems [Bala-
banov et al. 2014; Beyersdorff et al. 2015; Janota and Marques-Silva 2015].

From a proof complexity perspective, resolution is considered a weak system, wit-
nessed by the wealth of resolution lower bounds (cf. [Segerlind 2007] for a survey); and
the same classification applies to all of the QBF resolution calculi mentioned above,
not only due to their reliance on the weak propositional resolution system, but also
because of weak instantiations when dealing with quantifiers.

In addition to these weak QBF systems, there exist a number of very strong sequent
calculi [Cook and Morioka 2005; Egly 2012; Krajı́ček and Pudlák 1990] as well as the
general proof checking format QRAT [Heule et al. 2017].

However, compared to propositional proof complexity, a number of other approaches
is yet missing in QBF. In particular, algebraic systems such as polynomial calculus
[Clegg et al. 1996] or systems based on integer programming as cutting planes [Cook
et al. 1987] have received great attention in recent years in propositional proof com-
plexity. These systems are interesting as they are of intermediate strength: stronger
than resolution, but weaker than Frege. No analogues of these systems had been con-
sidered in QBF prior to the conference paper [Beyersdorff et al. 2016] underlying this
article; and even a QBF version of the propositional Frege hierarchy mentioned above
has not been considered before. Building on our work here, the recent paper [Beyers-
dorff et al. 2018] investigates an analogue of the cutting planes proof system for QBF
and [Beyersdorff et al. 2019] contains further work in this direction.

1.1. Summary of Results
Below we summarize our main contributions of this article, sketching the main results
and techniques.
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A. From propositional to QBF: new QBF proof systems. We exhibit a general method how
to transform a propositional proof system to a QBF proof system. Our method is both
conceptually simple and elegant. Starting from a propositional proof system P com-
prised of axioms and rules, we design a system P +∀red for closed prenex QBFs (Defi-
nition 3.1). Throughout the proof, the quantifier prefix is fixed, and lines in the system
P +∀red are conceptually the same as lines in P , i.e., clauses in resolution, circuits
from C in C -Frege (where C is AC0,AC0[p],TC0,NC1 or P/poly), or inequalities in cut-
ting planes. Our new system P +∀red uses all the rules from P , and can apply those on
arbitrary lines, irrespective of whether the variables are existentially or universally
quantified. To make the system complete, we introduce a ∀red rule that allows to re-
place universal variables by simple Herbrand functions, which can be represented as
lines in P . The link to Herbrand functions provides a clear semantic meaning for the
∀red rule, resulting in a natural and robust system P +∀red.

Our new systems P +∀red are inspired by the approach taken in the definition of
Q-Res [Kleine Büning et al. 1995]; and indeed when choosing resolution as the base sys-
tem P , our system P +∀red coincides with the previously studied QU-Res [Van Gelder
2012]. While our definitions are quite general and yield for example previously miss-
ing QBF versions of polynomial calculus or cutting planes, we concentrate here on
exploring the hierarchy C -Frege+∀red of new QBF Frege systems.

B. From circuit to QBF lower bounds: a general technique. As mentioned above, it is a long-
standing belief that circuit lower bounds correspond to proof size lower bounds, and
clearly some of the strongest lower bounds in proof complexity as those for AC0-Frege
are inspired by proof techniques in circuit complexity, cf. the survey of [Beame and
Pitassi 2001]. Here we give a precise and formal account on how any circuit lower
bound for C can be directly lifted to a proof size lower bound in C -Frege+∀red.

Conceptually, our lower bound method uses the idea of strategy extraction, an im-
portant paradigm in QBF (Theorem 4.3). Semantically, a QBF can be understood as a
game between a universal and an existential player, where the universal player wins
if and only if the QBF is false. Winning strategies for the universal player can be
very complex. However, we show that from each refutation of a false QBF in a system
C -Frege+∀red we can efficiently extract a winning strategy for the universal player in
a simple computational model we call C -decision lists. We observe that C -decision lists
are easy to transform into C circuits itself, with only a slight increase in complexity.

To obtain a proof-size lower bound we need a function f that is hard for C . From
f we construct a family Q-fn of false QBFs such that each winning strategy of the
universal player on Q-fn has to compute f . By strategy extraction, refutations of Q-
fn in C -Frege+∀red yield C -circuits for f ; hence all such refutations must be long. In
fact, we even show the converse implication to hold, i.e., from small C -circuits for f we
construct short proofs of Q-fn in C -Frege+∀red.

Our lower bound technique widely generalises ideas recently used by Beyersdorff
et al. [2015] to show lower bounds for Q-Res and QU-Res for formulas originating from
the PARITY function.

C. Lower bounds and separations: applying our framework. We apply our proof technique to
a number of famous circuit lower bounds, thus obtaining lower bounds and separations
for C -Frege+∀red systems that are yet unparalleled in propositional proof complexity.
The following results are contained in Section 5.

C.(i) Lower bounds and separations for the QBF proof system AC0[p]-Frege+∀red. The semi-
nal results of Razborov [1987] and Smolensky [1987] showed that PARITY and more
generally MODq are the classic examples for functions that require exponential-size
bounded-depth circuits with MODp gates, where p and q are different primes. Using
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these functions, we define families of QBFs that require exponential-size proofs in
AC0[p]-Frege+∀red by strategy extraction.

To obtain separations of these proof systems, the exact formulation of the QBFs
matters. When defining the PARITY or MODq formulas directly from (arbitrary)
NC1-circuits computing these functions, we obtain polynomial-size upper bounds in
Frege+∀red. However, when carefully choosing specific and indeed very natural encod-
ings, we can prove upper bounds for the MODq formulas even in AC0[q ]-Frege+∀red,
thus obtaining exponential separations of all the AC0[p]-Frege+∀red systems for dis-
tinct primes p.

As mentioned before, lower bounds for AC0[p]-Frege (as well as their separations) are
major open problems in propositional proof complexity.

C.(ii) Separating AC0[p]-Frege+∀red and TC0-Frege+∀red. MAJORITY is another classic
function in circuit complexity, for which exponential lower bounds are known for
constant-depth circuits with MODp gates for each prime p [Razborov 1987; Smolensky
1987]. Using our technique, we transfer these to lower bounds in AC0[p]-Frege+∀red
for all primes p. Carefully choosing the QBF encoding of MAJORITY, we obtain polyno-
mial upper bounds for the MAJORITY formulas in TC0-Frege+∀red, thus proving an
exponential separation between the two QBF proof systems AC0[p]-Frege+∀red and
TC0-Frege+∀red. Again, such a separation is wide open in propositional proof complex-
ity.

C.(iii) CNFs separating the AC0
d-Frege+∀red hierarchy. As a third example for our approach

we investigate the fine structure of AC0-Frege+∀red, comprising all AC0
d-Frege+∀red

systems, where all formulas in proofs are required to have at most depth d for a fixed
constant d. Resolution is an important example of such a system for depth d = 1.1
In circuit complexity the SIPSERd functions from [Boppana and Sipser 1990] provide
an exponential separation of depth-(d − 1) from depth-d circuits [Håstad 1986]. With
our technique, this separation translates into a separation of AC0

d−3-Frege+∀red from
AC0

d-Frege+∀red, where the increased gap of size 3 comes from our transformation of
C -decision lists into C -circuits.

The SIPSERd formulas achieving these separations are prenexed CNFs, i.e., the for-
mulas each have a matrix of depth 2. While in propositional proof complexity the hier-
archy of AC0

d-Frege systems is exponentially separated [Ajtai 1994; Krajı́ček et al. 1995;
Pitassi et al. 1993], such a separation by formulas of depth independent of d is a major
open problem.

C.(iv) Characterising lower bounds for QBF Frege. The main question left open by the
results described above is whether unconditional lower bounds can be obtained for
Frege+∀red or even EF +∀red. We show that such a result would imply either a major
breakthrough in circuit complexity (a lower bound for non-uniform NC1 or even P/poly)
or a major breakthrough in propositional proof complexity (lower bounds for classical
Frege or even EF); and in fact the opposite implications hold as well (Theorem 5.13).

This means that the problem of lower bounds for QBF Frege very naturally unites
the central problem in circuit complexity with the central problem in proof complexity.
Conceptually this is very interesting: the direct connection between progress in cir-
cuit complexity and proof complexity, which has often been postulated (cf. [Beame and
Pitassi 2001]), directly manifests in Frege+∀red, thus highlighting that Frege+∀red is
indeed a natural and important system.

1Although CNF formulas have depth 2, it is customary to consider Resolution being of depth d = 1 as it
handles CNF formulas as sets of clauses, i.e. sets of objects of depth d = 1.
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Frege+∀red

tree-like G0 EF+∀red

G0

tree-like G1

G1

p-simulation

Theorem 6.6
(p-simulation is open)

Fig. 1. The simulation order of QBF Gentzen and Frege systems

Technically, this result uses a normal form that we achieve for Frege+∀red proofs:
these can be decomposed into a classical Frege proof followed by a number of ∀red steps
(Theorem 4.5). We further show that even ∀red steps suffice that only substitute con-
stants (Theorem 4.7).

D. Gentzen vs. Frege in QBF: simulations and separations. In classical proof complexity Frege
and Gentzen’s sequent system LK are p-equivalent, i.e., proofs can be efficiently trans-
lated between the systems [Cook and Reckhow 1979]. In contrast, our findings show a
more complex picture for QBF, induced by the weak methods for handling (universal)
quantifiers. We concentrate on the most important standard Gentzen-style systems
G0 and G1 of Cook and Morioka [2005] as well as the QBF Frege systems Frege+∀red
and EF +∀red. The indices in G0 and G1 refer to the quantifiers complexity of formulas
allowed in cuts, cf. Section 6.1.1.

For these four systems the following picture emerges (cf. Figure 1): We prove that
tree-like G1 p-simulates EF+∀red (Theorem 6.4) and tree-like G0 simulates Frege+∀red
under a relaxed notion of p-simulation (Theorem 6.6). On the other hand, the converse
simulations are unlikely to hold. Under standard complexity-theoretic assumptions
we show that EF+∀red is strictly weaker than tree-like G1 (Theorems 6.8, 6.10). More-
over, EF+∀red is incomparable to both tree-like G0 and G0 (Theorems 6.11, 6.7). Hence,
unlike in the propositional framework, Gentzen appears to be stronger than Frege in
QBF.

While all these separations make use of complexity-theoretic assumptions, it will be
hard to improve these results to unconditional lower bounds (see C.(iv) above). How-
ever, since we use a number of different and indeed partly incomparable assumptions,
our separations seem very plausible.

E. QBF Frege corresponds to intuitionistic logic. The strongest tool for an understanding
of classical Frege as well as propositional and QBF Gentzen systems comes from their
correspondence to bounded arithmetic [Cook and Nguyen 2010; Krajı́ček 1995]. Here
we show such a correspondence between EF+∀red and first-order intuitionistic logic
IS1

2, introduced in [Buss 1986b; Cook and Urquhart 1993]. For this first-order arith-
metic formulas are translated into sequences of QBFs [Krajı́ček and Pudlák 1990].

Our main result on the correspondence states that translations of arbitrarily com-
plex prenex theorems in IS1

2 admit polynomial-size EF+∀red proofs (Theorem 6.1). In-
formally, this says that all IS1

2 consequences can be efficiently derived in EF +∀red, and
moreover, EF+∀red is the weakest system with this property.

The second facet of the correspondence is that IS1
2 can prove the correctness of

EF+∀red in a suitable encoding (Corollary 6.3), and in a certain sense EF+∀red is the
strongest proof system that is provably sound in the theory IS1

2.
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Technically, the correspondence as well as the simulation results mentioned under
D. above rest on a formalisation of the Strategy Extraction Theorem for QBF Frege sys-
tems. We provide two formalisations for this result: in the first we directly construct
Frege proofs for the correctness of the witnessing properties (Theorem 4.4). In the sec-
ond we use first-order logic, where we formalise strategy extraction in the theory S1

2
(Theorem 6.2). While the first formalisation applies to more systems and gives the sim-
ulation structure detailed in D., the second formalisation is stronger and enables the
correspondence to IS1

2.
Although intuitionistic bounded arithmetic was already developed by Buss [1986b]

in the mid 80s, no QBF counterpart of this theory was found so far—in sharp con-
trast to most other arithmetic theories [Cook and Nguyen 2010]. As we show here, the
missing piece in the puzzle is our new QBF Frege system EF +∀red.

Indeed, the appealing link between IS1
2 and EF+∀red comes via their witnessing prop-

erties: similarly as EF+∀red has strategy extraction for arbitrarily complex QBFs, the
theory IS1

2 admits a witnessing theorem for arbitrary first-order formulas [Cook and
Urquhart 1993].

Conceptually, our work draws on the close interplay of ideas and techniques from
proof complexity, computational complexity, and bounded arithmetic; and it is really
the interaction of these areas and techniques that form the technical basis of our re-
sults (which enforces us also to include rather extensive preliminaries).

1.2. Relations to previous work
In addition to the developments in propositional and QBF proof complexity sketched
in the beginning, the main precursor of our work is the paper [Beyersdorff, Chew,
and Janota 2015]. Strategy extraction for Q-Res and QU-Res was shown by Goultiaeva
et al. [2011] and Balabanov and Jiang [2012], but the idea to turn this into a lower
bound argument for the proof size originates from [Beyersdorff et al. 2015], where
the AC0 lower bound for PARITY is used to obtain exponential lower bounds for Q-Res
and QU-Res. However, the treatment in [Beyersdorff et al. 2015] is solely confined to
the resolution case. Here we widely generalise these concepts and uncover the full
potential of that approach. In fact, quite weak circuit lower bounds would suffice for
the proof-size lower bounds of [Beyersdorff et al. 2015], cf. Corollary 5.11 in the present
paper; and from [Beyersdorff et al. 2015] it is not clear how the full spectrum of the
state-of-the-art circuit lower bounds could be used to get proof size lower bounds.

Feasible interpolation is another technique relating circuit lower bounds to proof
size bounds. Feasible interpolation has been successfully applied to show lower bounds
for a number of propositional proof systems, including resolution [Krajı́ček 1997] and
cutting planes [Pudlák 1997]. Indeed, Beyersdorff et al. [2017] have recently shown
that feasible interpolation is also effective for QBF resolution calculi. Interpolation
transfers monotone circuit lower bounds to proof size lower bounds. Hence, different
from strategy extraction, there is no connection between the circuit model and the lines
in the proof system. Also, by results of [Bonet et al. 2004, 2000; Krajı́ček and Pudlák
1998] feasible interpolation is not applicable to strong systems such as AC0-Frege and
beyond. Another restriction of interpolation is that it only applies to special formulas,
and for these—at least in the case of QBF resolution systems—it can be understood as
a special case of strategy extraction [Beyersdorff et al. 2017].

1.3. Organization of the paper
Contents

1 Introduction 1
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2. PRELIMINARIES
We assume familiarity with basic notions from computational complexity, cf. [Arora
and Barak 2009], as well as from logic, cf. [Krajı́ček 1995], but define all specific con-
cepts needed in this paper. For a formula ϕwe denote by ϕ[x1/θ1, . . . , xk/θk] the formula
ϕ where variables xi have been substituted by formulas θi.

2.1. Circuit classes
We recall the definitions of standard circuit classes used in this paper. The class AC0

contains all languages recognizable by polynomial-size circuits over the Boolean basis
¬, ∨, ∧ with bounded depth and unbounded fan-in. When fixing the depth to a constant
d, we denote the circuit class by AC0

d. The class AC0[p] uses bounded-depth circuits
with MODp gates determining whether the sum of the inputs is 0 modulo p, and in
TC0 bounded-depth circuits with threshold gates are permitted. Stronger classes are
obtained by using NC1 circuits of polynomial size and logarithmic depth, and by P/poly
circuits of polynomial size.

When defining circuit families Cn from a circuit class C, we distinguish between
uniform and non-uniform families. For a uniform family, we require that there exists a
Turing machine, which from input 1n efficiently constructs the circuit Cn. In the non-
uniform setting, we merely require that the circuit Cn ∈ C exists and is of the required
size.
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For an in-depth account on circuit complexity we refer to [Vollmer 1999].

2.2. Proof systems
According to Cook and Reckhow [1979] a proof system for a language L is a polynomial-
time onto function P : {0, 1}∗ → L. Each string ϕ ∈ L is a theorem and if P (π) = ϕ,
π is a proof of ϕ in P . Given a polynomial-time function P : {0, 1}∗ → {0, 1}∗ the fact
that P ({0, 1}∗) ⊆ L is the soundness property for L and the fact that P ({0, 1}∗) ⊇ L is
the completeness property for L. Proof systems for the language TAUT of propositional
tautologies are called propositional proof systems and proof systems for the language
TQBF of true QBF formulas are called QBF proof systems. Equivalently, propositional
proof systems and QBF proof systems can be defined respectively for the languages
UNSAT of unsatisfiable propositional formulas and FQBF of false QBF formulas, in
this second case we call them refutational. Given two proof systems P and Q for the
same language L, P p-simulates Q (denoted Q 6p P ) if there exists a polynomial-time
function t such that for each π ∈ {0, 1}∗, P (t(π)) = Q(π). Two systems are called p-
equivalent if they p-simulate each other. A proof system P for L is called polynomially
bounded if there exists a polynomial p such that every x ∈ L has a P -proof of size at
most p(|x|), where |x| is the size of string x.

2.3. Frege systems
Frege proof systems are the common ‘textbook’ proof systems for propositional logic
based on axioms and rules [Cook and Reckhow 1979]. The lines in a Frege proof are
propositional formulas built from propositional variables xi and Boolean connectives
¬, ∧, and ∨. A Frege system comprises a finite set of axiom schemes and rules, e.g.,
ϕ ∨ ¬ϕ is a possible axiom scheme. A Frege proof is a sequence of formulas where each
formula is either a substitution instance of an axiom, or can be inferred from previous
formulas by a valid inference rule. Frege systems are required to be sound and impli-
cationally complete. The exact choice of the axiom schemes and rules does not matter
as any two Frege systems are p-equivalent, even when changing the basis of Boolean
connectives [Cook and Reckhow 1979] and [Krajı́ček 1995, Theorem 4.4.13]. Therefore
we can assume w.l.o.g. that modus ponens is the only rule of inference. Usually Frege
systems are defined as proof systems where the last formula is the proven formula.
To include also weak systems as resolution in this picture we use here the equivalent
setting of refutation Frege systems where we start with the negation of the formula
that we want to prove and derive the contradiction 0.

Given a circuit class C , a general definition of C -Frege is contained in [Jeřábek 2005].
Below we explicitly present the definitions of C -Frege for the circuit classes we will need
later. There are several common restrictions that can be imposed on Frege; for example
bounded-depth Frege systems (or AC0-Frege) are Frege systems where lines are formulas
with negations only on variables and with a bounded number of alternations between
∧’s and ∨’s. If the number of alternations is at most d, then the proof system is called
AC0

d-Frege. Bounded-depth Frege is called AC0-Frege since lines in an AC0-Frege proof are
representable as AC0-circuits.

Resolution (Res) is a particular kind of AC0
1-Frege system2 introduced by [Blake 1937]

and [Robinson 1965]. It is a refutational proof system manipulating unsatisfiable
CNFs as sets of clauses, where clauses are sets of literals. As we treat clauses as sets,
factoring (to contract multiple occurrences of the same literal) is done automatically.
The only inference rule of Resolution is

2We will consistently treat C -Frege systems as operating with lines from C . As Res operates with clauses we
will call it a AC0

1-Frege system even though it refutes CNFs, which are depth 2.
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C ∨ x D ∨ ¬x (Res rule),
C ∨D

where C,D denote clauses and x is a variable. A Res refutation derives the empty
clause.

Given a prime p, the AC0[p]-Frege systems are defined to be bounded-depth Frege
systems in the language with Boolean connectives ¬, ∨, ∧ and modular gates
MODp(x1, . . . , xn). The MODp predicate is true when

∑
i xi ≡ 0 (mod p).

The TC0-Frege systems are defined to be bounded-depth Frege systems in the lan-
guage with Boolean connectives ¬, ∨, ∧ and threshold gates Tk(x1, . . . , xn). The Tk
predicate is true when at least k of its inputs are true. Two different, but equiva-
lent, formalizations of TC0-Frege proof systems are given by [Buss and Clote 1996] and
[Bonet et al. 2000].

(Unrestricted) Frege systems correspond to the complexity class NC1 in the same
sense as bounded-depth Frege corresponds to the class AC0. We will refer sometimes to
Frege as NC1-Frege.

Extended Frege systems EF allow the introduction of new extension variables that
abbreviate formulas. Consistent with the above treatment of C -Frege, we define EF
here as a Frege system that directly operates with Boolean circuits rather than for-
mulas, where extension variables can be used to define the circuit gates (see [Jeřábek
2005] for the precise formulation). Therefore we will refer to EF also as P/poly-Frege.
An alternative characterization of EF is through substitution Frege systems SF that
allow arbitrary substitution instances of derived formulas [Cook and Reckhow 1979;
Krajı́ček and Pudlák 1989].

The Frege systems defined above form a hierarchy of proof systems

Res 6p AC0-Frege 6p AC0[p]-Frege 6p TC0-Frege 6p Frege 6p EF.

Currently lower bounds are only known for Res [Haken 1985] and AC0-Frege [Ajtai
1994; Krajı́ček et al. 1995; Pitassi et al. 1993], whereas super-polynomial lower bounds
for any of the stronger systems constitute major problems in proof complexity.

2.4. Quantified Boolean Formulas
A (closed prenex) Quantified Boolean Formula (QBF) is a formula where quantifiers
are introduced to propositional logic, which has constants 0, 1, the usual operators
¬,∧,∨,→,↔, and propositional variables. Each variable is quantified at the beginning
of the formula, using either an existential or universal quantifier. We denote such
formulas as Qϕ, where ϕ is a propositional Boolean formula called matrix, and Q is
its quantifier prefix. We typically use xi for existentially quantified variables and ui for
universally quantified variables. Sometimes we require the matrix to be a Conjunctive
Normal Form (CNF), in particular when we implement Resolution-style systems.

In a fully quantified prenex QBF, the quantifier prefix determines a total order of
the variables. Given a variable y, we will sometimes refer to the variables preceding y
in the prefix as variables left of y; analogously we speak of the variables right of y.

The quantifier complexity of QBFs is captured by sets Σqi and Πq
i , which are de-

fined inductively. Σq0 = Πq
0 is the set of quantifier-free propositional formulas, Σqi+1 is

the closure of Πq
i under existential quantification, and Πq

i+1 is the closure of Σqi under
universal quantifiers.

A QBF Q1x1 · · · Qkxk ϕ can be seen as a game between two players: universal (∀) and
existential (∃). In the i-th step of the game, the playerQi assigns a value to the variable
xi. The existential player wins if ϕ evaluates to 1 under the assignment constructed
in the game. The universal player wins if ϕ evaluates to 0. Given a universal variable
u with index i, a strategy for u is a function from all variables of index < i to {0, 1}.
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A QBF is false if and only if there exists a winning strategy for the universal player,
that is if the universal player has a strategy for all universal variables that wins any
possible game [Arora and Barak 2009; Goultiaeva et al. 2011].

3. DEFINING QBF FREGE SYSTEMS
In this section we provide a general method of transforming a propositional proof
system into a QBF proof system. While this method works for a wide range of proof
systems operating with lines and rules, we will concentrate here on the hierarchy of
C -Frege systems introduced in the previous section. However, our method also works
for further propositional proof systems such as polynomial calculus [Clegg et al. 1996]
or cutting planes [Beyersdorff et al. 2018; Cook et al. 1987].

For the following we fix a circuit class C with some natural properties, e.g., closure
under restrictions.3 In particular, C can be any of the circuit classes mentioned in
Section 2.

Definition 3.1 (C -Frege+∀red). A refutation of a false QBF Qϕ in the system
C -Frege+∀red is a sequence of lines L1, . . . , L` where each line is a circuit from the
class C , L1 = ϕ,4 L` = 0 and each Li is inferred from previous lines Lj using the
inference rules of C -Frege or using the following rule

Lj
(∀red),

Lj [u/B]

where Lj [u/B] belongs to the class C , variable u is rightmost (innermost with respect
to the prefix) among the variables of Lj , and B is a circuit from the class C containing
only variables left of u.

The formal justification why C -Frege+∀red is a sound and complete QBF proof sys-
tem is given in Theorem 3.2 below. However, let us pause a moment to see why adding
the ∀red rule results in a natural proof system C -Frege+∀red. Recall that we consider
C -Frege+∀red as a refutation system; hence we aim to refute false quantified C for-
mulas. A standard approach to witness the falsity of quantified formulas is through
Herbrand functions, which replace a universal variable u by a function in the existen-
tial variables left of u. These functions can be viewed as ‘counterexample functions’.
In Definition 3.1, B plays the role of the Herbrand function. Clearly, when restrict-
ing formulas to a class C we should also restrict B to that class, and substituting the
Herbrand function into the formula should again preserve C .

Note that we are even allowed to choose different Herbrand functions B for the
same variable u in different parts of the proof. In general, this will be unsound (unless
variables right of u are renamed). However, it is safe to do if the line Lj does not contain
any variables right of u.

It is illustrative to see how our construction compares to previously studied QBF res-
olution systems. Choosing Res as our propositional proof system, which is an AC0

1-Frege
system, we obtain Res +∀red. In Res +∀red the ∀red rule can substitute a universal u
by either a disjunction of literals or by a constant 0/1. In the former case, we simply
obtain a weakening step. In the latter case, if u appears positively in the clause then
substituting u by 0 precisely corresponds to an application of the ∀red rule in Q-Res,

3In the context of a circuit class, “closure under restriction” means that for any circuit in the class, if we pick
a partial assignment to some of the input variables and substitute in those constants, we still are guaranteed
to be in the same circuit class.
4In the case where C is AC0

1 we require that ϕ = L1 ∧ · · · ∧ Lm where Lj are lines in AC0
1-Frege.
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whereas substituting u by 1 results in a useless tautology.5 As Res +∀red can resolve
on existential and universal variables, our system Res +∀red is exactly the well-known
QU-Res (with weakening).

We now proceed to show soundness and completeness of the new QBF systems.

THEOREM 3.2. For every circuit complexity class C , the system C -Frege+∀red is a
refutational QBF proof system.

PROOF. Res +∀red is complete as it p-simulates Q-Res, which is complete for QBF
[Kleine Büning et al. 1995]. To obtain the completeness for C -Frege+∀red we first use
de Morgan’s rules to expand the formula into a CNF. This is possible as, by defini-
tion, C -Frege is implicationally complete. Now we can refute the CNF by Res +∀red.
C -Frege+∀red p-simulates Res +∀red and hence C -Frege+∀red is complete.

Regarding the soundness of C -Frege+∀red, let (L1, . . . , L`) be a refutation of Qϕ in
the system C -Frege+∀red and let

ϕi =

{
ϕ if i = 0,
ϕ ∧ L1 ∧ · · · ∧ Li otherwise.

By induction on i we prove that Qϕ semantically entails Qϕi, i.e., Qϕ |= Qϕi. Hence,
at step i = ` we will immediately obtain that Qϕ is false, since L` = 0 and Qϕ` ≡ 0.

Since Qϕ = Qϕ0 the base case of the induction holds.
We show now that Qϕ |= Qϕi implies Qϕ |= Qϕi+1. By definition, ϕi+1 = (ϕi ∧

Li+1) and Li+1 was either introduced by a C -Frege rule or by the ∀red rule. If Li+1 was
introduced by a C -Frege rule then ϕi |= Li+1, so ϕi |= ϕi+1 and clearly Qϕ |= Qϕi |=
Qϕi+1.

Suppose now that Li+1 was introduced by the ∀red rule, say Li+1 = Lj [u/B] with j 6
i, u the innermost variable among the ones in Lj and B relying only on the variables
left of u. Moreover suppose thatQϕi = Q1~x ∀uQ2~y ϕi, then we have the following chain
of equivalences

Qϕi = Q1~x ∀uQ2~y ϕi (1)
≡ Q1~x ∀uQ2~y ϕi ∧ Lj (2)

≡ Q1~x
((
Q2~y ϕi[u/0] ∧ Lj [u/0]

)
∧
(
Q2~y ϕi[u/1] ∧ Lj [u/1]

))
(3)

≡ Q1~x
(
Lj [u/0] ∧ Lj [u/1] ∧

(
Q2~y ϕi[u/0]

)
∧
(
Q2~y ϕi[u/1]

))
(4)

≡ Q1~x
(
Lj [u/0] ∧ Lj [u/1] ∧ ∀uQ2~y ϕi

)
(5)

≡ Q1~x
(
Lj [u/0] ∧ Lj [u/1] ∧ Lj [u/B] ∧ ∀uQ2~y ϕi

)
(6)

≡ Q1~x∀uQ2~y ϕi ∧ Lj [u/0] ∧ Lj [u/1] ∧ Lj [u/B]. (7)

In (3) and (5) we used the definition of semantic expansion of a universal variable
in a QBF; in (4), (6) and (7) we used the fact that Lj [u/0], Lj [u/1] and Lj [u/B] do not
contain ~y variables. From (7) follows, by weakening, that

Qϕi |= Q1~x∀uQ2~y ϕi ∧ Lj [u/B],

hence Qϕ |= Qϕi+1.

Clearly lower bounds on the complexity of C -Frege+∀red follow from lower bounds
on C -Frege. The lower bounds we show later will be of a different kind as they will be

5Note that, contrasting the usual setting of Q-Res [Kleine Büning et al. 1995], our definition of Res +∀red
does not need to disallow tautologous resolvents as these will always be reduced to 1.
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‘purely for QBF proof systems’ in the sense that they will lower bound the number of
occurrences of the ∀red rule in refutations (cf. also [Beyersdorff et al. 2017] for a formal
definition of what qualifies as a ‘genuine’ QBF lower bound).

4. STRATEGY EXTRACTION
We introduce now the simple computational model of C -decision lists.

Definition 4.1 (C -decision list). A C -decision list is a programme of the following
form

if C1(~x) then u← B1(~x);
else if C2(~x) then u← B2(~x);
...
else if C`−1(~x) then u← B`−1(~x);
else u← B`(~x),

where C1, . . . , C`−1 and B1, . . . , B` are circuits in the class C . Hence a decision list as
above computes a Boolean function u = g(~x).

This definition generalises decision lists from [Rivest 1987], where the conditions
Ci(~x) are expressible as terms. We note that for many cases C -decision lists can be
easily transformed into C -circuits.

PROPOSITION 4.2. Let D be a C -decision list using circuits C1, . . . , C`−1 and
B1, . . . , B`, such that D computes the Boolean function g. Then there exists a circuit
D′ ∈ C computing the same function g, such that the size of D′ is linear in the size of D
and

depth(D′) 6 max

{
max

16i6`−1
{depth(Ci)}, max

16i6`
{depth(Bi)}

}
+ 2.

PROOF. We have that

u ≡
∨̀
j=1

Cj(~x) ∧Bj(~x) ∧
∧

16k<j

¬Ck(~x)

 ,

where C` is a circuit computing the constant 1 and for j = 1 we have an empty conjunct
in the formula which is true.

Balabanov and Jiang [2012] proved a strategy extraction result for QU-Res. Here we
generalise that result to the full hierarchy of C -Frege+∀red QBF proof systems. This
result is the main tool we use to prove size lower bounds in such systems.

THEOREM 4.3 (STRATEGY EXTRACTION). Given a false QBF Qϕ and a refutation
π of Qϕ in C -Frege+∀red, it is possible to extract in linear time (w.r.t. |π|) a collection of
C -decision lists D computing a winning strategy on the universal variables of ϕ.

PROOF. Let π = (L1, . . . , Ls) be a refutation of the false QBF Qϕ and let

πi =

{
∅ if i = s,

(Li+1, . . . , Ls) otherwise.

We show, by downward induction on i, that from πi it is possible to construct in linear
time (w.r.t. |πi|) a winning strategy σi for the universal player for the QBF formulaQϕi,
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where

ϕi =

{
ϕ if i = 0,

ϕ ∧ L1 ∧ · · · ∧ Li otherwise,

such that for each universal variable u in Qϕ, there exists a C -decision list Di
u com-

puting σiu as a function of the variables in Q left of u, having size O(|πi|).
The statement of the Strategy Extraction Theorem correspond to the case when i =

0. For the base case we can define all the Ds
u as u← 0, as any strategy will refute this

QBF, so σsu = 0 is just picked arbitrarily.
We show now how to construct σi−1

u and Di−1
u from σiu and Di

u:
• If Li is derived by some Frege rule, then for each universal variable u we set σi−1

u =
σiu and Di−1

u = Di
u.

• If Li is the result of an application of a ∀red rule, that is
Lj

Lj [u/B]
, where u is

rightmost among the variables in Lj , Lj [u/B] is a circuit in C using only variables on
the left of u, and Lj(u/B) = Li. Let ~xu′ denote all variables on the left of u′ in the
quantifier prefix of Qϕ. Then we define

σi−1
u′ (~xu′) =


σiu′(~xu′) if u′ 6= u,

B(~xu) if u′ = u and Lj [u/B](~xu) = 0,

σiu(~xu) if u′ = u and Lj [u/B](~xu) = 1.

Moreover for each u′ 6= u we set Di−1
u′ = Di

u′ and we set Di−1
u as follows:

if ¬Lj [u/B](~xu) then u← B(~xu);
else Du

i (~xu).

We now check that for each u′, σi−1
u′ respects all the properties of the inductive claim.

I σi−1
u′ and Di−1

u′ are well defined. By construction Lj [u/B] is a formula in the variables
~x left of u. This immediately implies that, for each universal variable u′, the strategy
σi−1
u′ is well defined and Di−1

u is also well defined. By induction hypothesis Di
u is a

C -decision list, so Di−1
u is also a C -decision list.

I σi−1 and Di−1
u′ are constructed in linear time w.r.t. |πi−1|. This holds by inductive

hypothesis and the fact that computing ¬Lj(u/B) is linear in |πi−1| (the number of
characters in this subproof).
I Di−1

u′ computes σi−1
u′ . For u′ 6= u, by induction hypothesis, Di−1

u′ computes σiu′ . The
same happens, by construction, for u′ = u.
I σi−1 is a winning strategy for Qϕi−1. Fix an assignment ρ to the existential vari-
ables of ϕ. Let τi be the complete assignment to existential and universal variables,
constructed in response to ρ under the strategy σi. By induction hypothesis τi falsifies
ϕi. We need to show that τi−1 falsifies ϕi−1. To show this we distinguish again two
cases.

If Li is derived by some Frege rule, then σi−1 = σi and τi−1 = τi. Hence by induction
hypothesis, τi falsifies a conjunct from ϕi. To argue that τi−1 also falsifies a conjunct
from ϕi−1 we only need to look at the case when the falsified conjunct is Li. As Li is
false under τi and Li is derived by a sound Frege rule, one of the parent formulas of Li
in the application of the Frege rule must be falsified as well. Hence τi−1 falsifies ϕi−1.

Let now Li = Lj [u/B] for some j < i. In this case, our strategy σi−1 changes the
assignment τi only when τi made the universal player win by falsifying Li. As we
set u to B(τi(~x)), the modified assignment τi−1 falsifies Lj . Otherwise, if τi does not
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falsify Li we keep τi−1 = τi and hence falsify one of the conjuncts of ϕi−1 by induction
hypothesis.

From the proof of the Strategy Extraction Theorem it is clear that the size of the
C -decision list computing the winning strategy extracted from the refutation π has
size that is actually linear in the number of applications of the ∀red rule in π. More
precisely, the size of the C -decision list computing the winning strategy for variable u
corresponds exactly to the number of ∀red rules on u in π. The size of a C -decision list
is intended to be its string representation. Interestingly, the same observation above
holds if we consider the number of entries of the C -decision list. I.e. the C -decision
list computing the winning strategy extracted from the refutation π has a number of
entries that is linear in the number of applications of the ∀red rule in π.

4.1. Formalized Strategy Extraction
We now observe that the strategy extraction from Theorem 4.3 is in fact provably
correct in the corresponding Frege system. In Theorem 6.2 we also give a formalization
of strategy extraction in the theory of bounded arithmetic S1

2.
For this subsection (and also later occasionally) we assume w.l.o.g. that QBFs are of

the form ∃x1∀y2 . . . ∃xn∀yn ϕ(x1, . . . , xn, y1, . . . , yn) with only one variable per quantifier
block. This is no restriction as a QBF with larger quantifier blocks can be transformed
into this form by adding dummy variables to the prefix, which do not appear in the
matrix of the formula. This will simplify our analysis.

THEOREM 4.4. Let C be AC0, AC0[p], TC0, NC1, or P/poly. Given a C -Frege+∀red
refutation π of a QBF

∃x1∀y1 . . . ∃xn∀yn ϕ(x1, . . . , xn, y1, . . . , yn)

where ϕ ∈ Σq0, we can construct in time |π|O(1) a C -Frege proof of
n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬ϕ(x1, . . . , xn, y1, . . . , yn)

for some circuits Ci ∈ C . (The depth of the C -Frege proof increases by a constant com-
pared to the depth of the C -Frege+∀red proof.)

PROOF. We inspect the proof of the Strategy Extraction Theorem above. Let again
π = (L1, . . . , Ls) be a C -Frege+∀red refutation of a QBF Qϕ given as

∃x1∀y1 . . . ∃xn∀yn ϕ(x1, . . . , xn, y1, . . . , yn)

where ϕ ∈ Σq0 and define πi and ϕi as in the proof of Theorem 4.3. We will show
by downward induction on i, that from πi it is possible to construct in linear time a
winning strategy

σi = {Ci1(x1), . . . , Cin(x1, . . . , xn, y1, . . . , yn−1)} ⊆ C

for the universal player for the QBF Qϕi. Moreover, the formula
n∧
l=1

(yl ↔ Cil (x1, . . . , xl, y1, . . . , yl−1))→ ¬ϕi(x1, . . . , xn, y1, . . . , yn)

denoted σi(ϕi) which witnesses the negation of Qϕ will have a C -Frege proof of size
K|πi|K for a constant K depending only on the choice of the C -Frege system. The state-
ment of the theorem corresponds to the case i = 0.

In the base case, ϕs contains a contradiction so the winning strategy can be defined
as the set of trivial circuits {0, . . . , 0} and it is trivially provably correct.
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Assume now that σi(ϕi) has a C -Frege proof of size K(s+ 1− i)|πi|K .
If Li is derived by a C -Frege rule, then σi−1 = σi.
Let now Li = Lj [u/B] be the result of an application of a ∀red rule on Lj where u is

innermost among the variables in Lj . Then define Ci−1
l = Cil if u 6= yl, otherwise set

Ci−1
l (z) =

{
B(z) if Lj [u/B](z) = 0

Cil (z) if Lj [u/B](z) = 1.

This constructs strategies σi from π by a D|πi|-time algorithm for a constant D.
W.l.o.g. D < K. In fact, circuits Cil are in C . (For constant depth C ’s, we take for
circuits Cil the equivalent constant-depth circuits from Proposition 4.2).

We want to show that σi−1(ϕi−1) has a C -Frege proof of size K(s+ 1− (i− 1))|πi−1|K .
If Li is derived by a C -Frege rule, then σi also witnesses ¬ϕi−1 because

¬Li → ¬(L′1 ∧ · · · ∧ L′t)

for some conjuncts L′1, . . . , L′t in ϕi−1. Note that Ci−1
l ’s are then Cil ’s. The implications

¬ϕi → ¬ϕi−1 (8)

σi(ϕi) ∧ (¬ϕi → ¬ϕi−1)→ σi−1(ϕi−1) (9)

can be derived by a fixed sequence of C -Frege rules depending only on the choice of
C -Frege. (Note that the left-hand sides of the implications σi(ϕi) and σi−1(ϕi−1) are
identical, because σi−1 = σi in this case.) Thus, the common size of C -Frege proofs of
both these implications is 6 K0|πi−1|K0 where w.l.o.g. K0 < K. Therefore σi−1(ϕi−1)
has a C -Frege proof of size 6 K(s+ 1− i)|πi|K +K1|πi−1|K1 6 K(s+ 1− (i− 1))|πi−1|K
where K1 > K0 depends again on a fixed sequence of C -Frege rules needed to derive
σi−1(ϕi−1) from (8), (9) and σi(ϕi), so w.l.o.g. K1 < K.

Assume now that Li = Lj [u/B] is the result of an application of ∀red where u = yl.
Then there is a fixed sequence of C -Frege rules deriving the implications

σi(ϕi) ∧ ¬Lj [u/B]→ σi−1(ϕi−1) (10)

σi(ϕi) ∧ Lj [u/B]→ σi−1(ϕi−1). (11)

Formula (10) follows from the provable formula Lj ∧ (u↔ B)→ Lj [u/B], because Lj is
a conjunct in ϕi−1, u = yl and Ci−1

l is B, because ¬Lj [u/B] holds in this case. Formula
(11) follows from the provable formula ϕi−1 ∧ Lj [u/B] → ϕi and

∧n
l=1 yl ↔ Ci−1

l →∧n
l=1 yl ↔ Cil under the condition that Ci−1

l = Cil which is the case if Lj [u/B] holds.
The total size of both C -Frege derivations of (10) and (11) is K0|πi−1|K0 where K0

depends on the choice of C -Frege and the size of Ci−1
l ’s. The size of all Ci−1

l ’s is bounded
by K|πi−1|K . Hence we can assume K0 < K. It follows that σi−1(ϕi−1) has a C -Frege
proof of size 6 K(s+ 1− i)|πi|K +K1|πi−1|K1 6 K(s+ 1− (i−1))|πi−1|K where as before
K1 depends on a fixed sequence of C -Frege rules needed to simulate a fixed set of ‘cut’
rules, i.e., w.l.o.g. K1 < K.

4.2. Normal forms for C -Frege+∀red proofs
We conclude this section with an application of the Strategy Extraction Theorem to
obtain normal forms for C -Frege+∀red proofs. Firstly, we show that any C -Frege+∀red
refutation can be efficiently rewritten as a C -Frege derivation followed essentially just
by ∀red rules. Secondly, we show that in the ∀red rule it is sufficient to only substitute
constants.
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THEOREM 4.5. Let C be AC0, AC0[p], TC0, NC1, or P/poly. For any C -Frege+∀red
refutation π of a QBF ψ of the form

∃x1∀y1 · · · ∃xn∀yn ϕ(x1, . . . , xn, y1, . . . , yn)

where ϕ ∈ Σq0, there is a |π|O(1)-size C -Frege+∀red refutation of ψ starting with a C -Frege
derivation of

n∨
i=1

(yi 6↔ Ci(x1, . . . , xi, y1, . . . , yi−1)), (12)

from ϕ for some circuits Ci ∈ C , followed by n applications of the ∀red rule, gradually
replacing the rightmost variable yi by circuit Ci(x1, . . . , xi, y1, . . . , yi−1) and cutting the
inequality yi 6↔ Ci(x1, . . . , xi, y1, . . . , yi−1) out of the disjunction (12).

PROOF. Given a C -Frege+∀red refutation π of ψ, by Theorem 4.4, there is a |π|O(1)-
size C -Frege proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬ϕ(x1, . . . , xn, y1, . . . , yn).

Having ϕ freely available in the refutation, C -Frege can derive (12) by applying the
cut rule (derivable in C -Frege).

The refutation then continues by n applications of the ∀red rule, which one by one
replaces the rightmost variable yi by Ci(x1, . . . , xi, y1, . . . , yi−1) and eliminates

yi 6↔ Ci(x1, . . . , xi, y1, . . . , yi−1)

from the disjunction
∨
i yi 6↔ Ci(x1, . . . , xi, y1, . . . , yi−1).

Theorem 4.5 is an analogue of the midsequent theorem for sequent systems. An
immediate consequence of Theorem 4.5 is the p-equivalence of C -Frege+∀red and its
tree-like version. This is in contrast to the G1, G0 systems where one has p-simulations
of dag systems by tree systems only for prenex Σq1-formulas (see [Cook and Morioka
2005, Theorem 6] and the discussion after the proof).

COROLLARY 4.6. Let C be AC0, AC0[p], TC0, NC1, or P/poly. Then C -Frege+∀red is
p-equivalent to tree-like C -Frege+∀red.

PROOF. By Theorem 4.5, any C -Frege+∀red derivation can be efficiently replaced by
a proof in the normal form. The C -Frege part of such derivation can be efficiently re-
placed by a tree-like C -Frege proof, cf. [Krajı́ček 1995], and the rest of the C -Frege+∀red
refutation given in the normal form is tree-like.

Finally we further simplify C -Frege+∀red so that every application of the ∀red rule
only substitutes constants 0/1 instead of general circuits. We denote the resulting sys-
tem as C -Frege+∀red0,1. This shows that C -Frege+∀red systems are indeed very ro-
bustly defined.

THEOREM 4.7. Let C be AC0, AC0[p], TC0, NC1, or P/poly. Then, C -Frege+∀red and
C -Frege+∀red0,1 are p-equivalent.

PROOF. It is enough to show that any C -Frege+∀red refutation can be transformed
efficiently into a refutation where the ∀red rule substitutes only constants. By Theo-
rem 4.5, for any C -Frege+∀red refutation π of Qϕ there is a |π|O(1)-size C -Frege deriva-
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tion of
n∨
i=1

(yi 6↔ Ci(x1, . . . , xi, y1, . . . , yi−1))

from ϕ(x1, . . . , xn, y1, . . . , yn). Applying ∀red0,1 on yn we can then derive

(Cn(x1, . . . , xn, y1, . . . , yn−1) 6↔ c) ∨
n−1∨
i=1

(yi 6↔ Ci(x1, . . . , xi, y1, . . . , yi−1))

for both constants c = 0, 1.
However, there is a polynomial-size C -Frege proof of

(Cn(x1, . . . , xn, y1, . . . , yn−1)↔ 1) ∨ (Cn(x1, . . . , xn, y1, . . . , yn−1)↔ 0),

so we can derive
∨
i<n (yi 6↔ Ci(x1, . . . , xi, y1, . . . , yi−1)). In this way we can efficiently

cut all disjuncts and derive a contradiction in C -Frege+∀red0,1.

5. SEPARATIONS AND LOWER BOUNDS VIA CIRCUIT COMPLEXITY
We now introduce a class of QBFs defined from some circuits Cn computing a func-
tion f . Choosing different functions f , these formulas will form the basis of our lower
bounds.

Definition 5.1 (Q-Cn). Let n be an integer and Cn be a circuit with inputs
x1, . . . , xn. Let t1, . . . , tm−1 be a topological ordering of the internal gates of Cn, and
let the output gate of Cn be tm. We define

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm (u↔ ¬tm) ∧
m∧
i=1

Gi,

where u↔ ¬tm ≡ (u∨tm)∧(¬u∨¬tm) andGi expresses as a CNF the function computed
in the circuit Cn at gate i, e.g. if node ti computes the ∧ of tj and tk then

Gi = ti ↔ (tj ∧ tk) ≡ (¬ti ∨ tj) ∧ (¬ti ∨ tk) ∧ (ti ∨ ¬tj ∨ ¬tk),

similarly if gate i computes ¬, ∨, ⊕, MODp, Tk or some other Boolean function.

Informally, the QBF Q-Cn expresses that there exists an input ~x such that Cn(~x)
neither evaluates to 0 nor 1, an obvious contradiction as Cn computes a total function
on {0, 1}n. The formulasGi can be considered as the result of a Tseitin translation used
widely in SAT and QBF solving. We intentionally place the universal variable u to the
left of the Tseitin variables ti, thus making the Tseitin variables inaccessible when
constructing the strategy of u. We note that the hardness of the formulas crucially
depends on this choice of the order of quantification (compare also [Beyersdorff et al.
2016]).

Using these formulas together with the Strategy Extraction Theorem, we now es-
tablish a tight connection between the circuit class C and C -Frege+∀red.

THEOREM 5.2. Let C be one of the circuit classes AC0, AC0[p], TC0, NC1, P/poly and
let (Cn)n∈N be a non-uniform family of circuits where Cn is a circuit with n inputs. Then
the following implications hold:

(i) if the QBFs Q-Cn have C -Frege+∀red refutations of size bounded by a function q(n),
then for each n, Cn is equivalent to a circuit C ′n where C ′n is of size O(q(n)) and uses
the gates and depth allowed in C ;

(ii) if (Cn)n∈N is a polynomial-size circuit family from C then the QBFs Q-Cn have
polynomial-size refutations in C -Frege+∀red.
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PROOF. Regarding (i), by the Strategy Extraction Theorem and Proposition 4.2, if
the QBF Q-Cn has a refutation in C -Frege+∀red of size S then a winning strategy
for the universal player can be computed by a circuit C ′n ∈ C of size O(S). We have
that in Q-Cn the quantifier prefix looks like ∃x1 · · · ∃xn∀u∃~t. Now, by construction,
u 6↔ Cn(x1, . . . , xn), hence a winning strategy for the universal player must consist
of playing u = Cn(x1, . . . , xn). This means that the circuit C ′n computing the winning
strategy for the universal player is equivalent to the circuit Cn and the size bound
follows.

Note that the circuits C ′n and Cn are equivalent but not identical. The first one C ′n
is the strategy extracted from a decision list and depends on the proof in question,
whereas Cn is the original circuit encoded into Q-Cn with Tseitin variables.

Regarding (ii), we define the ti variables (1 6 i 6 m) for Q-Cn as in Definition 5.1.
By definition, the ti are indexed w.r.t. a topological ordering of the nodes of Cn.

We prove, by induction on i, that there exists a circuit Di ∈ C such that ti ↔ Di is
derivable in C -Frege with size polynomial in |Di|.

In the base case we have that C -Frege is able to prove x↔ x for every input variable
x.

For the inductive step, suppose that ti corresponds to a gate �(tj1 , . . . , tj`) with fan-
in `, where � could be an ∧,∨,¬,⊕,MODp, Tk, . . . from the gates allowed in the class C
and j1 . . . j` is a sequence of indices less than i. By the inductive property we know that
tk ↔ Dk is provable in C -Frege with proofs of size polynomial in |Dk|, for every k < i
(as well as any input variables). Hence tjk ↔ Djk is provable in C -Frege with proofs of
size polynomial in |Djk | for every input gate variable tjk . Moreover, C -Frege is able to
make the following inference in a polynomial number of steps

tj1 ↔ Dj1 · · · tj` ↔ Dj` ti ↔ �(tj1 , . . . , tj`)

ti ↔ �(Dj1 , . . . , Dj`)
.

Let then Di = �(Dj1 , . . . , Dj`). At the m-th step C -Frege proves that tm ↔ Dm, from
which follows that

tm ↔ Dm u↔ ¬tm
u↔ ¬Dm

.

Since now u is universal and the innermost variable of u ↔ ¬Dm, we can apply the
∀red rule and get 0 ↔ ¬Dm, 1 ↔ ¬Dm, which leads to an immediate contradiction in
the QBF proof system C -Frege+∀red.

In particular, a Boolean function f is computable by polynomial-size C circuits if
and only if Q-Cn have polynomial-size C -Frege refutations for each choice of Boolean
circuits (Cn)n∈N computing f . Note that the circuits Cn are not necessarily circuits in
the class C .

In the remainder of this section we apply Theorem 5.2 to a number of circuit classes
and transfer circuit lower bounds to proof size lower bounds.

5.1. Lower bounds for bounded-depth QBF Frege systems
PARITY is one of the best-studied functions in terms of its circuit complexity.
With Theorem 5.2 we can immediately transfer circuit lower bounds for PARITY to
AC0[p]-Frege+∀red, regardless of the encoding for PARITY.

COROLLARY 5.3 (Q-PARITY LOWER BOUNDS). Let Cn be a family of polynomial-
size circuits computing PARITY. For each odd prime p the QBFs Q-Cn require refuta-
tions of exponential size in AC0[p]-Frege+∀red.
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PROOF. The exponential lower bound for the refutation size in AC0[p]-Frege+∀red
follows from Theorem 5.2 and the fact that for each odd prime p any family of
bounded-depth circuits with MODp gates computing PARITY must be of exponential
size [Razborov 1987; Smolensky 1987].

We highlight that non-trivial lower bounds for AC0[p]-Frege are one of the major open
problems in propositional proof complexity. We complement the lower bound in Corol-
lary 5.3 with an upper bound for arbitrary NC1 encodings of PARITY in Frege+∀red.

COROLLARY 5.4 (Q-PARITY UPPER BOUNDS). Let Cn be a family of NC1 cir-
cuits computing PARITY. Then the QBFs Q-Cn have polynomial-size refutations in
Frege+∀red.

PROOF. By a result of Muller and Preparata [1975], PARITY can be computed by cir-
cuits in NC1. Hence, if we consider a family Cn of NC1 circuits computing PARITY then
the polynomial upper bound in Frege+∀red follows immediately from Theorem 5.2.

In fact, this upper bound can be improved to the QBF proof system
AC0[2 ]-Frege+∀red, albeit not for arbitrary NC1-encodings of PARITY, as it is not clear
how these could be handled in bounded depth. For this purpose, we consider explicit
QBFs for PARITY, which can be built from its inductive definition PARITY(x1, . . . , xn) =
PARITY(x1, . . . , xn−1)⊕ xn. This leads to the QBFs

Φn = ∃x1 · · · ∃xn∀u∃t2 · · · ∃tn (t2 ↔ (x1 ⊕ x2)) ∧
n∧
i=3

(ti ↔ (ti−1 ⊕ xi)) ∧ (u↔ ¬tn),

where a↔ (b⊕c) ≡ (¬a∨¬b∨¬c)∧(¬a∨b∨c)∧(a∨¬b∨c)∧(a∨b∨¬c). This formulation
of Q-PARITY was considered by Beyersdorff et al. [2015], where the formulas Φn are
shown to be hard for Q-Res and QU-Res. Here we obtain:

COROLLARY 5.5. The PARITY-formulas Φn require refutations of exponential
size in AC0[p]-Frege+∀red for each odd prime p, but they have polynomial-size
AC0[2 ]-Frege+∀red refutations.

PROOF. The lower bound follows as in Corollary 5.3. For the upper bound we cannot
use Theorem 5.2, but need to give a more direct proof. Without loss of generality we
can assume that our AC0[2 ]-Frege+∀red system uses the connectives {∧,∨,¬,↔,⊕}.

Then it is easy to see, by induction on i, that Frege proves ti ↔ ⊕(x1, x2, . . . , xi) with
a proof of size linear in i for each i = 2, . . . , n. Hence, similarly to what was done in
Theorem 5.2, we get

u↔ ¬⊕ (x1, x2, . . . , xn). (13)

Then u is the rightmost variable in (13); hence by the ∀red rule we have

1↔ ¬⊕ (x1, x2, . . . , xn) and 0↔ ¬⊕ (x1, x2, . . . , xn),

which gives an immediate contradiction.

In fact, we can further strengthen Corollary 5.5 and use Smolensky’s circuit lower
bounds for an even more ambitious separation of all AC0[p]-Frege+∀red systems. For
this we consider the function

MODp(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ≡ 0 (mod p)

0 otherwise.
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For r 6 p− 1 let

MODp,r(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ≡ r (mod p)

0 otherwise.

If we want to use MODp for a separation of AC0[p]-Frege+∀red and AC0[q ]-Frege+∀red
for different primes p, q, then MODp has to be encoded as a QBF in the language com-
mon to both proof systems, which means that we cannot use MODp or MODq gates. As
for PARITY, an arbitrary NC1 encoding as in Corollary 5.3 will also not work (this would
just give upper bounds in Frege+∀red), so we need to devise again explicit QBF encod-
ings for MODp. Such QBFs can be built using the fact that MODp, that is MODp,0, can
be defined for r 6= 0 by

MODp,r(x1, . . . , xi) = (MODp,r(x1, . . . , xi−1) ∧ ¬xi) ∨ (MODp,r−1(x1, . . . , xi−1) ∧ xi),
and for r = 0 by

MODp,0(x1, . . . , xi) = (MODp,0(x1, . . . , xi−1) ∧ ¬xi) ∨ (MODp,p−1(x1, . . . , xi−1) ∧ xi).
Using variables sri for MODp,r(x1, . . . , xi) this leads to the QBFs

Θp
n =∃x1 · · · ∃xn∀u∃s0

1∃s1
1∃s0

2∃s1
2∃s2

2 · · · ∃s0
n · · · ∃sp−1

n (u↔ ¬s0
n) ∧ (s1

1 ↔ x1) ∧ (s0
1 ↔ ¬x1)∧∧

1<i6n
0<r6p−1

(
sri ↔ (sri−1 ∧ ¬xi) ∨ (sr−1

i−1 ∧ xi)
)
∧
∧

1<i6n

(
s0
i ↔ (s0

i−1 ∧ ¬xi) ∨ (sp−1
i−1 ∧ xi)

)
.

COROLLARY 5.6. For each pair p, q of distinct primes the MODp-formulas Θp
n re-

quire refutations of exponential size in AC0[q ]-Frege+∀red, but have polynomial-size
refutations in AC0[p]-Frege+∀red.

PROOF. The exponential lower bound for the QBF proof system AC0[q ]-Frege+∀red
follows from Theorem 5.2 together with the result from [Razborov 1987; Smolensky
1987] that for distinct primes p, q any family of bounded-depth circuits with MODq

gates computing MODp must be of exponential size.
Regarding the upper bound, without loss of generality we can assume that our

AC0[p]-Frege system uses the connectives {∧,∨,¬,↔,MODp}. Then it is easy to see,
by induction on i, that AC0[p]-Frege proves

sri ↔ MODp(x1, . . . , xi, 1, 1, . . . , 1︸ ︷︷ ︸
p−r

),

with a proof of size linear in i. Hence, similarly to what was done in Theorem 5.2 and
Corollary 5.5, we get

u↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

). (14)

Then u is the rightmost variable in (14); hence by the ∀red rule we have

1↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

) and 0↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

),

which gives an immediate contradiction.

Another notorious function in circuit complexity is MAJORITY. Again we can trans-
form circuit lower bounds to proof size lower bounds for arbitrary encodings of
MAJORITY.
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COROLLARY 5.7 (LOWER BOUNDS FOR Q-MAJORITY). Let Cn be a family of
polynomial-size circuits computing MAJORITY(x1, . . . , xn). Then for every prime p, the
QBFs Q-Cn require refutations of exponential size in AC0[p]-Frege+∀red.

PROOF. The lower bound follows again applying Theorem 5.2 and the fact
that MAJORITY requires exponential-size bounded-depth circuits with MODp gates
[Razborov 1987; Smolensky 1987].

For general encodings, we can again show Frege+∀red upper bounds.

COROLLARY 5.8 (Q-MAJORITY UPPER BOUNDS). Let Cn be a family of NC1 circuits
computing MAJORITY(x1, . . . , xn). Then the QBFs Q-Cn have polynomial-size refuta-
tions in the QBF proof system Frege+∀red.

PROOF. By a result of Muller and Preparata [1975], the function MAJORITY is com-
putable in NC1 and hence Q-Cn are well defined. The upper bound then follows from
Theorem 5.2.

As for the MODp functions, we can improve on this upper bound by consider-
ing explicit QBF encodings of MAJORITY, thereby even obtaining a separation of
AC0[p]-Frege+∀red systems from TC0-Frege+∀red.6 Explicit QBFs for MAJORITY can
be defined using the following property of the k-threshold function

Tk(x1, . . . , xi) ≡ Tk(x1, . . . , xi−1) ∨ (Tk−1(x1, . . . , xi−1) ∧ xi). (15)

Using variables tik for Tk(x1, . . . , xi) this gives rise to the QBFs

Ψn = ∃x1 · · · ∃xn∀u∃t10t11 · · · ∃tnn/2 (u↔ ¬tnn/2)∧∧
i6n

ti0 ∧ (t11 ↔ x1) ∧
∧

k6n/2
i6n

(
tik ↔ ti−1

k ∨ (ti−1
k−1 ∧ xi)

)
.

COROLLARY 5.9. For each prime p the MAJORITY-based formulas Ψn require
refutations of exponential-size in the QBF proof system AC0[p]-Frege+∀red, but have
polynomial-size refutations in TC0-Frege+∀red.

PROOF. The exponential lower bound from [Razborov 1987; Smolensky 1987] will
give us the exponential lower bound w.r.t. the size of Ψn in AC0[p]-Frege+∀red, since the
size of Ψn is O(n2).

Regarding the polynomial-size refutations of the QBF formula Ψn in TC0-Frege+∀red
we can proceed similarly as for PARITY in Frege. The crucial feature here is that Tk
are, by definition of TC0, in the language of TC0-Frege. Hence (15) can be used to prove
tjk ↔ Tk(x1, . . . , xj) and we can easily refute Ψn in TC0-Frege+∀red.

We note that a separation of AC0[p]-Frege from TC0-Frege constitutes a major open
problem in propositional proof complexity as we are currently lacking lower bounds
for AC0[p]-Frege.

6Clearly, such a separation already follows from Corollary 5.6 together with the simulation of
AC0[p]-Frege+∀red by TC0-Frege+∀red. Here we will prove the stronger result that all these systems are
separated by one natural principle, namely MAJORITY.
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5.2. Lower bounds for constant depth QBF Frege systems
We now aim at a fine-grained analysis of AC0-Frege by studying its subsystems
AC0

d-Frege. Our next result is a version of Theorem 5.2, however, we need to be a bit
more careful for circuits of fixed depth d.

THEOREM 5.10. Let (Cn)n∈N be a non-uniform family of circuits where Cn is a cir-
cuit with n inputs. Then the following implications hold:

(i) if the QBFs Q-Cn have AC0
d-Frege+∀red refutations of size bounded by a function

q(n), then for each n, Cn is equivalent to a depth-(d+ 2) circuit C ′n of size O(q(n));
(ii) if (Cn)n∈N is a family of polynomial-size depth-d circuits, then the QBFs Q-Cn have

polynomial-size refutations in AC0
d-Frege+∀red.

PROOF. The proof of (i) follows the proof of the analogous statement of Theorem 5.2.
The Strategy Extraction Theorem in this case tells us that from refutations of Q-Cn
in AC0

d-Frege+∀red of size S we can extract a winning strategy for the universal player
that can be computed by AC0

d-decision lists of size O(S). By Proposition 4.2, this means
that the winning strategy can be also computed by AC0

d+2 circuits and the size upper
bound follows.

The proof of point (ii) follows the proof of the analogous statement of The-
orem 5.2. That proof will give us that Q-Cn has polynomial-size refutations in
AC0

d+2-Frege+∀red. Here we want to prove that Q-Cn has actually polynomial-size
proofs in AC0

d-Frege+∀red. Without loss of generality suppose that the last gate tm of
Cn is an

∧
with fan-in `, that is

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm (u↔ ¬tm) ∧ (tm ↔
∧
j6`

tij ) ∧ ϕn,

where each tij is an
∨

gate and ϕn is the encoding of the rest of the circuit Cn. We
clearly have that

u↔ ¬tm tm ↔
∧
j6` tij

u↔
∨
j6` ¬tij

from which we obtain both

u ∨
∧
j6`

tij , (16)

¬u ∨
∨
j6`

¬tij . (17)

Now we can proceed, similarly as in Theorem 5.2. By induction (on the depth of Cn)
AC0

d-Frege is able to substitute tij with Dij where Dij is an AC0
d−1-formula over the

x1, . . . , xn variables starting with an
∨

. More precisely by induction we can prove that
AC0

d-Frege proves both

tij ∨ ¬Dij , (18)
¬tij ∨Dij . (19)

Hence from (17) and (18) follows that ¬u ∨
∨
j6` ¬Dij , which is an AC0

d-formula only
over the variables u, x1, . . . , xn. Hence by the ∀red rule we get∨

j6`

¬Dij . (20)
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Similarly from (16) we get first that
∧
j6`(u ∨ tij ) and then using (19) we get

∧
j6`(u ∨

Dij ), which, again, is an AC0
d-formula over the variables u, x1, . . . , xn. By the ∀red rule

we get ∧
j6`

Dij . (21)

From (20) and (21) follows immediately a contradiction.

From Theorem 5.10 we obtain a wealth of lower bounds for Res +∀red.

COROLLARY 5.11. Let f(x1, . . . , xn) be a Boolean function requiring exponential-
size depth-3 circuits and let (Cn)n∈N be polynomial-size circuits (of unbounded
depth) computing f . Then the QBFs Q-Cn require exponential-size refutations in
AC0

1-Frege+∀red and hence, in particular, in Res +∀red.

We now prove a separation of constant-depth Frege+∀red systems. For this we em-
ploy the Sipser functions separating the hierarchy of constant-depth circuits. We quote
the definition of the SIPSERd function from Boppana and Sipser [1990]:

SIPSERd =
∧

i16m1

∨
i26m2

∧
i36m3

· · ·
⊙
id6md

xi1i2i3...id ,

where
⊙

=
∨

or
∧

depending on the parity of d. The variables x1, . . . , xn appear as
xi1i2i3...id for ij 6 mj , where m1 =

√
m/ logm, m2 = m3 = · · · = md−1 = m, md =√

dm logm/2 and m = (n
√

2/d)1/(d−1).

COROLLARY 5.12. Fix an integer d > 2. Let (Cnd )n∈N be a family of polynomial-size
depth-(d + 3) circuits computing the function SIPSERd+3(x1, . . . , xn). Then the QBFs
Q-Cnd need exponential-size refutations in AC0

d-Frege+∀red, but have polynomial-size
refutations in AC0

d+3-Frege+∀red.

PROOF. The lower bound follows from Theorem 5.10 and from the result that
for every d, SIPSERd+3 needs exponential-size depth-(d + 2) circuits [Håstad 1986].
Regarding the upper bound, by construction Cnd has depth d + 3 and polynomial-
size. Hence, by Theorem 5.10, the family Q-Cnd has polynomial-size refutations in
AC0

d+3-Frege+∀red.

Note that the gap of size 1 in the circuit separation of Håstad [1986] increases to
a gap of size 3 in our proof system separation, due to the transformation in Proposi-
tion 4.2. We highlight that in contrast to Corollary 5.12 where our separating formulas
are CNFs, a separation of the depth-d Frege hierarchy with formulas of depth indepen-
dent of d is a major open problem in propositional proof complexity.

5.3. Characterizing QBF Frege and extended Frege lower bounds
We finally address the question of lower bounds for Frege+∀red or even EF +∀red. Our
next result states that achieving such lower bounds unconditionally will either imply
a major breakthrough in circuit complexity or a major breakthrough in classical proof
complexity. (Notice that it might be much easier to obtain the disjunction than any of
the disjuncts.)

THEOREM 5.13. Let C be either P/poly or NC1. C -Frege+∀red is not polynomially
bounded if and only if PSPACE 6⊆ C or C -Frege is not polynomially bounded.7

7By NC1 we mean non-uniform NC1. Note that by the space hierarchy theorem it is known that PSPACE 6⊆
uniform NC1, but this does not suffice for Frege+∀red lower bounds.
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PROOF. Clearly if C -Frege is not polynomially bounded then C -Frege+∀red is not
polynomially bounded. If PSPACE 6⊆ C then let f be a Boolean function in PSPACE but
not in C . Since QBF is PSPACE-complete there exists a QBF Q~w ϕ(~w, x1, . . . , xn) with
a CNF ϕ such that

f(x1, . . . , xn) ≡ Q~w ϕ(~w, x1, . . . , xn).

We define

Q-fn = ∃x1 · · · ∃xn∀u (u↔ Q~w ϕ(~w, x1, . . . , xn)),

which can be rewritten into formulas Θn in prenex form. Notice that the only winning
strategy for the universal player on both Q-fn and Θn is to compute u = f(x1, . . . , xn).
Therefore, the Strategy Extraction Theorem together with f 6∈ C immediately implies
super-polynomial lower bounds for Θn in C -Frege+∀red.

In the opposite direction, assume that C -Frege+∀red is not polynomially bounded.
Then there is a sequence of true QBFs Qψn such that ¬Qψn do not have polynomial-
size refutations in C -Frege+∀red. Let Qψn have the form

∀x1∃y1 . . . ∀xn∃yn ψn(x1, . . . , xn, y1, . . . , yn).

If PSPACE 6⊆ C , we are done. Otherwise, there are polynomial-size circuits Ci witness-
ing the existential quantifiers in Qψn. That is, for any x1, . . . , xn, y1, . . . , yn

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ψn(x1, . . . , xn, y1, . . . , yn). (22)

We claim that (22) is a sequence of tautologies without polynomial-size EF proofs.
Otherwise, having ¬ψn, C -Frege can derive

∨
i yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1) by a

polynomial-size proof, and so as in Theorem 4.5, C -Frege+∀red can efficiently refute
¬Qψn.

Recall that a problem is in uniform NC1 if it is in NC1 and, in addition, there is a
polynomial-time algorithm which for each input length generates an NC1 circuit solv-
ing the problem. We remark that we do have a separation between uniform NC1 and
PSPACE, because uniform NC1 ⊆ L and L 6= PSPACE by the space hierarchy theorem.
Therefore, choosing f ∈ PSPACE \ uniform NC1 and considering the prenex formulas
Θn arising from Q-fn we can infer the weaker result that Frege+∀red has no uniform
short proofs of Θn.

6. RELATION OF QBF FREGE TO SEQUENT SYSTEMS AND BOUNDED ARITHMETIC
Having defined and analysed the new QBF Frege systems it is natural to ask how
they compare to classic sequent calculi—which have a long history for QBF [Cook and
Morioka 2005; Dowd 1985; Egly 2012; Krajı́ček and Pudlák 1990]—and first-order the-
ories of bounded arithmetic. After reviewing the necessary prerequisites we approach
both of these questions in this section.

6.1. Background on sequent systems and bounded arithmetic
6.1.1. Sequent Calculi. Gentzen’s sequent calculus [Gentzen 1935] is a classical proof

system, both for first-order and propositional logic, cf. [Krajı́ček 1995]. The proposi-
tional sequent calculus LK operates with sequents Γ −→ ∆ with the semantic meaning∧
ϕ∈Γ ϕ |=

∨
ψ∈∆ ψ.

An important rule in LK is the cut rule

Γ −→ ∆, A A,Γ −→ ∆
(cut rule)

Γ −→ ∆
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where A is called the cut formula. Standard axioms like 0 −→ and −→ 1 are included
in the system LK as well. LK is well known to be p-equivalent to Frege, cf. [Krajı́ček
1995].

The quantified propositional calculus G, as defined by Cook and Morioka [2005],
extends Gentzen’s classical propositional sequent calculus LK by allowing quantified
propositional formulas in sequents and by adopting the following extra quantification
rules for ∀-introduction

ϕ(x/ψ),Γ−→ ∆
(∀-l)∀xϕ,Γ−→ ∆

Γ−→ ∆, ϕ(x/p)
(∀-r)

Γ−→ ∆,∀xϕ

and ∃-introduction

ϕ(x/p),Γ−→ ∆
(∃-l)∃xϕ,Γ−→ ∆

Γ−→ ∆, ϕ(x/ψ)
(∃-r).

Γ−→ ∆,∃xϕ

For the rules ∀-l and ∃-r, ϕ(x/ψ) is the result of substituting ψ for all free occurrences
of x in ϕ. The formula ψ may be any quantifier-free formula (i.e., without bounded
variables) that is free for substitution for x in ϕ (i.e., no free occurrence of x in ϕ is
within the scope of a quantifier Qy such that y occurs in ψ). The variable p in the rules
∀-r and ∃-l must not occur free in the bottom sequent.

For i > 0, Gi is a subsystem of G with cuts restricted to prenex Σqi ∪ Πq
i -formulas.

On propositional formulas G0 is p-equivalent to Frege and G1 is p-equivalent to EF, cf.
[Krajı́ček 1995]. The systems G and Gi were originally introduced slightly differently,
cf. [Krajı́cek and Takeuti 1992; Krajı́ček 1995; Krajı́ček and Pudlák 1990], not restrict-
ing the formulas ψ in ∀-l and ∃-r to be quantifier-free, and defining Gi as the system
G allowing only Σqi -formulas in sequents. Hence, Gi ’s could not prove all true QBFs.
We will, however, use the redefinition of these systems by Cook and Morioka [2005].
Notably, (for Cook and Morioka’s definition) Jerábek and Nguyen [2011] showed that
the system Gi with cuts restricted to prenex Σqi -formulas is p-equivalent to Gi with
cuts restricted to prenex Πq

i -formulas and p-equivalent to Gi with cuts restricted to
(not necessarily prenex) Σqi ∪ Πq

i -formulas. Moreover these equivalences hold as well
for the tree-like versions of these systems. Cook and Morioka [2005] also proved that
their definition of Gi is p-equivalent to Gi from [Krajı́ček and Pudlák 1990] for i > 0
and prenex Σqi ∪ Πq

i -formulas (so by [Jerábek and Nguyen 2011] also for non-prenex
ones). Finally, the systems Gi and tree-like Gi have quite constructive witnessing prop-
erties. Whenever there are polynomial-size tree-like G1 proofs of formulas ∃y An(x, y)
for An(x, y) ∈ Σq1, there exist polynomial-size circuits Cn witnessing the existential
quantifiers, i.e., the formula An(x,Cn(x)) holds, cf. [Cook and Morioka 2005, Theo-
rem 7]. In case of G0 the circuits witnessing Σq1-formulas are from NC1, cf. [Cook and
Morioka 2005, Theorem 9]. The witnessing theorems can be generalized to systems
tree-like Gi and Gi for i > 1 w.r.t. Σqi -formulas and witnessing functions corresponding
to higher levels of the polynomial hierarchy.

6.1.2. Bounded arithmetic. In first-order logic it is customary to consider the language
L = {0, S,+, ·,6,

⌊
x
2

⌋
, |x|,#}, where the function |x| is intended to mean ‘the length of

the binary representation of x’ and x#y = 2|x|·|y|.
A quantifier is bounded if it has the form ∃x, x 6 t or ∀x, x 6 t for x not occurring

in the term t. A bounded quantifier is sharply bounded if t has the form |s| for some
term s. By Σb0 (=Πb

0 = ∆b
0) we denote the set of all formulas in the language L with all

quantifiers sharply bounded. For i > 0, the sets Σbi+1 and Πb
i+1 are defined inductively.

Σbi+1 is the closure of Πb
i under bounded existential and sharply bounded quantifiers,
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and Πb
i+1 is the closure of Σbi under bounded universal and sharply bounded quanti-

fiers. That is, the complexity of bounded formulas in the language L (formulas with
all quantifiers bounded) is defined by counting the number of alternations of bounded
quantifiers, ignoring the sharply bounded ones. For i > 0, ∆b

i denotes Σbi ∩Πb
i .

Bounded formulas capture the polynomial hierarchy: for any i > 0 the i-th level Σp
i

of the polynomial hierarchy coincides with the sets of natural numbers definable by
Σbi -formulas. Dually for Πp

i and Πb
i .

Buss [Buss 1986a] introduced theories of bounded arithmetic Si
2, Ti

2 for i > 1 in
the language L. The axioms of Si

2 consist of a set of basic axioms defining properties
of symbols from L, cf. [Krajı́ček 1995], and length induction Σbi -LIND, which is the
following scheme for Σbi -formulas A (or equivalently, for A ∈ Πb

i , in which case we
speak of Πb

i -LIND):

A(0) ∧ ∀x (A(x)→ A(x+ 1))→ ∀xA(|x|).

Theories Ti
2 are defined similarly, but here the induction scheme is

A(0) ∧ ∀x (A(x)→ A(x+ 1))→ ∀xA(x)

for A ∈ Σbi .
By FPΣp

i [O(log n)] we denote the set of functions computed by a polynomial-time Tur-
ing machine making at most O(log n) queries to a Σp

i -oracle. FPΣp
i is defined analo-

gously but without the restriction on the number of queries. Ti
2 proves the totality of

functions FPΣp
i computable in polynomial time under a Σp

i oracle, cf. [Krajı́ček 1995,
Theorem 6.1.2]. More precisely, for any f ∈ FPΣp

i there is a Σbi+1-formula f(x) = y

such that Ti
2 ` ∀x∃y f(x) = y. In the same way, Si

2 proves the totality of functions in
FPΣp

i [O(log n)], which are computed in polynomial time with at most O(log n) queries to
a Σp

i -oracle, cf. [Krajı́ček 1995, Theorem 6.2.2]. By Parikh’s theorem, Ti
2 ` ∃y f(x) = y

implies Ti
2 ` ∃y (|y| 6 p(|x|) ∧ f(x) = y) for some polynomial p, and the same is true for

Si
2, cf. [Buss 1986a; Parikh 1971].
Si

2 can be seen as a first-order non-uniform version of tree-like Gi , i > 1. Firstly, for
j > 1 any Σbj-formula ϕ(x) can be translated into a sequence ‖ϕ(x)‖n of Σqj -formulas,
where n denotes the size of the input x in binary (cf. [Krajı́ček 1995, Definition 9.2.1]).
Then, for i, j > 1 whenever Si

2 ` A for A ∈ Σbj , there is a polynomial p such that
formulas ‖A‖n have tree-like Gi -proofs of size p(n). This also holds for Ti

2 in place of
Si

2 if tree-like Gi is replaced by Gi . The ability to use arbitrary j is due to Cook and
Morioka [2005, Theorem 3] who generalized a standard result, cf. [Krajı́ček 1995, The-
orem 9.2.6], which worked for j = i.

If A ∈ Πb
1, we abuse notation and also denote by ‖A‖n the propositional formulas

obtained as in ‖A‖n, but leaving the universally quantified variables free. S1
2 ` A for

A ∈ Πb
1 implies that S1

2 proves the existence of polynomial-size tree-like G1-proofs of
propositional formulas ‖A‖n, cf. [Krajı́ček 1995, Theorems 9.2.6 and 9.2.7].

6.2. Intuitionistic logic corresponds to extended Frege for QBFs
The main information on strong propositional and QBF systems stems from their cor-
respondence to first-order theories of bounded arithmetic, cf. [Beyersdorff 2009; Cook
and Nguyen 2010; Krajı́ček 1995]. In this sense, tree-like G1 corresponds to S1

2 and
G1 to T1

2 as explained above. Here we will establish such a correspondence between
first-order intuitionistic logic and EF +∀red.

Buss [1986b] developed an intuitionistic version of S1
2, denoted IS1

2, and showed that
for any formula A, IS1

2 ` ∃y A(x, y) implies the existence of a polynomial-time function
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f such that A(x, f(x)) holds. This witnessing property resembles the Strategy Extrac-
tion Theorem for EF +∀red. Using the formalized Strategy Extraction Theorem we can
make the correspondence between these systems formal8.

First, we recall the definition of IS1
2 by Cook and Urquhart [1993]. It is equivalent to

Buss’ original definition, cf. [Buss 1986b]. IS1
2 is a theory in the language L (like S1

2),
with underlying intuitionistic predicate logic, a set of basic axioms defining properties
of symbols from L, and a polynomial induction scheme for Σb+1 -formulas A:

A(0) ∧ ∀x
(
A
(⌊x

2

⌋)
→ A(x)

)
→ ∀xA(x),

where Σb+1 -formulas are Σb1-formulas without negation and implication connectives. S1
2

is Σb0-conservative over IS1
2, cf. [Cook and Urquhart 1993, Corollary 1.7]. That is, any

Σb0 formula provable in S1
2 is provable already in IS1

2.
We will also use Cook and Urquhart’s conservative extension of IS1

2 denoted IPV, cf.
[Cook and Urquhart 1993, Chapter 4 and Theorem 4.12]. IPV is defined by adding in-
tuitionistic predicate logic to Cook’s theory PV, cf. [Cook 1975]. The language of IPV
consist of symbols for all polynomial-time functions. The hierarchy of formulas Πb

i (PV)
is defined analogously as Πb

i but in the language of IPV. Also, propositional transla-
tions ‖A‖n for Πb

1(PV)-formulas A are defined analogously as in the case of A ∈ Πb
1.

Consequently, IPV ` A for A ∈ Πb
1(PV) implies that propositional formulas ‖A‖n have

polynomial-size EF proofs, cf. [Krajı́ček 1995, Theorem 9.2.7].
Cook and Urquhart [1993, Corollary 8.18] generalized Buss’ witnessing theorem:

whenever IPV ` ∀x∃y A(x, y) for an arbitrarily complex formula A, then there is
a polynomial-time function f (with an IPV function symbol f ) such that IPV `
∀xA(x, f(x)).

We are now ready to derive the correspondence between IS1
2 and EF +∀red. The corre-

spondence consists of two parts (cf. [Beyersdorff 2009]). For the first part we translate
first-order formulas ϕ into sequences of QBFs [Krajı́ček and Pudlák 1990] and show
that translations of provable IS1

2 formulas have short EF+∀red proofs.

THEOREM 6.1. If IS1
2 proves a statement T in prenex form, then there exist

polynomial-size EF+∀red refutations of ‖¬T‖n where n denotes the size of the input
variables in binary.

PROOF. By Cook and Urquhart’s improvements of Buss’ witnessing theorem, if IS1
2

proves T of the form

∀x1∃y1 · · · ∀xn∃yn T ′(x1, . . . , xn, y1, . . . , yn)

for T ′ ∈ Σb0, there is an IPV-function f1(x1) such that

IPV ` ∀x1∀x2∃y2 · · · ∀xn∃yn T ′(x1, . . . , xn, f1(x1), y2, . . . , yn).

Iterating this argument all existential quantifiers of T can be witnessed provably in
IPV by polynomial-time functions f1, . . . , fn. Therefore, IPV proves the Πb

1(PV) formula

ϕ =

n∧
i=1

(yi ↔ fi(x1, . . . , xi))→ T ′(x1, . . . , xn, y1, . . . , yn) (23)

8It could be tempting to expect that an adequate counterpart to IS1
2 would be intuitionistic propositional

logic. However, intuitionistic propositional logic admits the feasible interpolation property, cf. [Buss and
Mints 1999], while IS1

2 can (constructively) prove ∀x, z [A(x, y)∨B(x, z)], in principle, without the existence
of an efficient interpolant. It is also known, cf. [Ghasemloo and Pich 2013], that IS1

2 ` ∀y A(x, y)∨∀z B(x, z)
implies the existence of an efficient interpolating circuit, but moving the universal quantifiers inside the
disjunction is a priori not allowed in intuitionistic logic.
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and the formulas ‖ϕ‖n have polynomial-size EF proofs. EF+∀red can now refute
‖¬T‖n in polynomial size by deriving

∨
i (yi 6= fi(x1, . . . , xi)) and cutting all the dis-

juncts as in the proof of Theorem 4.5.

The second part of the correspondence consists in proving the soundness of the
proof systems in the first-order theory. For this we need to express the correctness
of EF+∀red by QBFs. This is typically done by the reflection principle of a proof system
P , stating that whenever ϕ has a P -proof (resp. a P -refutation), then ϕ is true (resp.
false).

Here, the Formalized Strategy Extraction Theorem allows us to express the reflec-
tion principle of EF+∀red by a Πb

1-formula REF(EF +∀red). More precisely, we define
REF(EF +∀red) as the Πb

1-formula expressing that if π is a proof of a QBF, then circuits
Ci(x1, . . . , xi, y1, . . . , yi−1) obtained as in the Strategy Extraction Theorem witness the
existential quantifiers in the QBF as in the statement of Theorem 6.2 below.

To show this reflection principle in IS1
2 we return again to the Strategy Extraction

Theorem and provide a different formalization than in Theorem 4.4, this time in the
theory S1

2.

THEOREM 6.2 (FORMALIZED STRATEGY EXTRACTION). There is a linear-time al-
gorithm A such that S1

2 proves the following. Assume that π is an EF+∀red refutation of
a QBF ψ of the form

∃x1∀y1 · · · ∃xn∀yn ϕ(x1, . . . , xn, y1, . . . , yn)

where ϕ ∈ Σq0. ThenA(π) outputs n circuitsC1(x1), . . . ,Cn(x1, . . . , xn, y1, . . . , yn−1) defin-
ing a winning strategy for the universal player on formula ψ; that is,

∀x1 · · · ∀xn∀y1 · · · ∀yn
[ n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬ϕ(x1, . . . , xn, y1, . . . , yn)
]
.

PROOF. It is just sufficient to inspect the proof of the Strategy Extraction Theorem
from Section 4, and point out that it essentially uses a Πb

1-induction on the number of
steps in the proof π, that is Πb

1-LIND available in S1
2. For convenience of the reader we

recap here what was the approach. Let π = (L1, . . . , Ls) be an EF+∀red refutation of
the QBF Qϕ given as in Theorem 6.2 and put

πs = ∅, πi = (Li+1, . . . , Ls) for i < s

ϕ0 = ϕ, ϕi = ϕ ∧ L1 ∧ · · · ∧ Li for i > 0.

We show by downward induction on i, that from πi it is possible to construct in linear
time a winning strategy

σi = {Ci1(x1), . . . , Cin(x1, . . . , xn, y1, . . . , yn−1)}

for the universal player for the QBF Qϕi. The statement of the Formalized Strategy
Extraction Theorem corresponds to the case i = 0.

In the base case, ϕs contains a contradiction and the winning strategy can be defined
as the set of trivial circuits {0, . . . , 0}. Assume now that σi is a winning strategy for
Qϕi. If Li is derived by an EF rule, then we set σi−1 = σi. Assume now that Li =
Lj [u/B] is the result of an application of a ∀red rule on Lj where u is the rightmost
variable in Lj . We define Ci−1

l = Cil if u 6= yl, otherwise we set

Ci−1
l (z) =

{
B(z) if Lj [u/B](z) = 0

Cil (z) if Lj [u/B](z) = 1.
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This constructs circuits Cil from πi by a standard O(|πi|)-time algorithm. To show
that the strategies σi are winning for any 0 6 i 6 |π|, we need to analyse the inductive
step.

Assume that σi is the winning strategy for the universal player on Qϕi. If Li is de-
rived by an EF rule, the winning strategy for Qϕi works also for Qϕi−1 because a fal-
sification of Li by a given assignment implies a falsification of one of its predecessors.
If Li is the result of an application of ∀red, Ci−1

l (z) is redefined only if Lj [u/B](z) = 0.
For z such that Lj [u/B](z) = 1, the strategy σi has to work also for Qϕi−1. Therefore,
σi−1 is a winning strategy for the universal player on Qϕi−1.

An NP predicate is a set of binary strings accepted by a non-deterministic
polynomial-time machine, and similarly for coNP predicates. The statement that a
strategy σ is winning for the universal player on Qψ is a coNP predicate (given π)
expressible as a well-behaved Πb

1-formula. The induction we used is on the number of
steps in π. Hence, the presented proof is an S1

2-proof.

This implies the second part of the correspondence of IS1
2 to EF +∀red.

COROLLARY 6.3. IS1
2 proves REF(EF +∀red).

PROOF. The claim follows from Theorem 6.2 together with the Σb0-conservativity of
S1

2 over IS1
2 [Cook and Urquhart 1993].

Corollary 6.3 implies that EF+∀red is the weakest proof system that allows short
proofs of all IS1

2 theorems, i.e., whenever Theorem 6.1 holds for a ‘decent’ proof sys-
tem P in place of EF +∀red, then P p-simulates EF+∀red on QBFs: If Theorem 6.1
holds for a proof system P , then by Corollary 6.3, there are polynomial-size P -proofs of
‖REF(EF +∀red)‖n. Hence, if π is an EF+∀red proof of a QBF ψ, then P has |π|O(1)-size
proofs of ψ with the existential quantifiers witnessed by some circuits. By P being de-
cent we mean that P can introduce efficiently the existential quantifiers in place of the
witnessing circuits and this way prove ψ efficiently in the size of π. That is, P is decent
if it can derive ψ efficiently in the length of the shortest derivation of ψ witnessed by
some circuits.

On the other hand, EF+∀red is intuitively the strongest proof system for which IS1
2

proves the reflection principle. Technically, this only holds for proof systems that admit
the Strategy Extraction Theorem as for other systems we would need to define the
reflection principle as a more complex statement. (Nevertheless, IS1

2 provability of the
reflection principle for Σqk-formulas for any fixed k implies strategy extraction for the
given proof system.)

6.3. Gentzen and Frege for QBFs
We now compare the classic Gentzen systems with our new Frege systems. The two for-
malisms are well known to be equivalent in the classical propositional case [Krajı́ček
1995]. By applying the formalized Strategy Extraction Theorem, we show that Gentzen
systems simulate Frege systems in the QBF context (cf. Figure 1 in Section 1.1). How-
ever, the opposite simulations (Gentzen by Frege) are very likely false as we show by
a number of conditional separations.

THEOREM 6.4. Tree-like G1 p-simulates EF +∀red.

PROOF. By Theorem 4.5, any EF+∀red refutation π of a QBF ψ of the form

∃x1∀y1 · · · ∃xn∀yn ϕ(x1, . . . , xn, y1, . . . , yn)
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where ϕ ∈ Σq0 can be transformed in time |π|O(1) into an EF proof of
n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬ϕ(x1, . . . , xn, y1, . . . , yn)

for certain circuits Ci. We want to derive ¬ψ in tree-like G1. Since we do not distinguish
between a refutation of ψ and provability of ¬ψ this will prove the theorem.

CLAIM 6.5. There is a |π|O(1)-size tree-like G1 proof of the following sequent
{yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}ni=1 −→ ¬ϕ(x1, . . . , xn, y1, . . . , yn)

where the encoding of circuits Ci might use some auxiliary variables.

PROOF OF CLAIM. To see that the claim holds note first that by the p-equivalence
of EF and tree-like G1 (cf. [Krajı́ček 1995]), the EF proof obtained above can be turned
into a |π|O(1)-size tree-like G1-proof of the formula

¬

(
n∧
i=1

yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)

)
∨ ¬ϕ.

This proof can be easily modified so that the ∨ connective is not introduced, leading to
a |π|O(1)-size tree-like G1-proof of the sequent

−→ ¬
(

n∧
i=1

yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)

)
,¬ϕ.

Moving ¬ (
∧n
i=1 yi = Ci(x1, . . . , xi, y1, . . . , yi−1)) from the succedent to the antecedent

we obtain
n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) −→ ¬ϕ.

Finally, tree-like G1 derives the sequent we want by ‘not introducing’ ∧ in the an-
tecedent. This proves the claim.

Moving ¬ϕ to the succedent, applying ∀-l and ∃-l introductions, tree-like G1 then
derives

∀yn ϕ(x1, . . . , xn, y1, . . . , yn),Γ,∃yn (yn ↔ Cn(x1, . . . , xn, y1, . . . , yn−1)) −→
where Γ = {yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)}n−1

i=1 .
As tree-like G1 proves efficiently −→ ∃y (y ↔ C(x)) for any circuit C, we can cut the

formula ∃yn (yn ↔ Cn(x1, . . . , xn, y1, . . . , yn−1)) out of the antecedent and derive

∀yn ϕ, {yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)}n−1
i=1 −→ .

Now, we use ∃-l introduction to obtain
∃xn∀yn ϕ, {yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)}n−1

i=1 −→ .

In this way we can gradually cut out all remaining formulas from the antecedent,
quantify all variables, move ψ to the succedent and derive ¬ψ in tree-like G1 by a proof
of size |π|O(1).

To introduce the quantifier prefix of ψ in the previous proof we needed to cut Σq1-
formulas. We would like to use a similar proof to simulate Frege+∀red by tree-like G0.
However, tree-like G0 is allowed to cut only Σq0-formulas. Therefore we obtain just a
simulation of Frege+∀red by tree-like G0 where the proven sequent in tree-like G0 con-
tains a non-empty (easily derivable) antecedent.
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THEOREM 6.6. There is a polynomial-time function t such that given any
Frege+∀red refutation of a QBF ψ of the form

∃x1∀y2 · · · ∃xn∀yn ϕ(x1, . . . , xn, y1, . . . , yn)

where ϕ ∈ Σq0, t(π) is a tree-like G0 proof of the sequent

∀x1∃y1 · · · ∀xn∃yn
n∧
i=1

yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ¬ψ

for some formulas Ci. Note that the antecedent has a tree-like G0 proof of size |π|O(1).

PROOF. By Theorem 4.5, any Frege+∀red refutation π of a QBF ψ can be trans-
formed in time |π|O(1) into a Frege proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬ϕ(x1, . . . , xn, y1, . . . , yn)

for certain formulas Ci. Analogously as in the proof of Theorem 6.4, we efficiently
obtain a |π|O(1)-size tree-like G0 proof of

n∧
i=1

yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ¬ϕ.

Applying rules ∀-l, ∃-l, ∀-l, ∃-l (in this order) we derive

∃xn∀yn ϕ,∀xn∃yn
n∧
i=1

yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1) −→ .

In this way we efficiently introduce all quantifiers, then move ψ to the succendent,
and derive the required sequent in tree-like G0.

We now prove some conditional separations between Gentzen and Frege systems for
QBF. As we saw in Section 5.3, improving these separations to unconditional results
tightly corresponds to major open problems in circuit complexity and proof complexity.

6.3.1. Formulas hard in Gentzen, but easy in Frege. We first give formulas (conditionally)
hard for G0, but easy for EF+∀red.

THEOREM 6.7. If P/poly 6= NC1 then there are Σq1-formulas with polynomial-size
EF+∀red proofs but without polynomial-size G0 proofs.

PROOF. Let f be a function in P/poly. Then EF+∀red has simple polynomial-size
proofs of Σq1 formulas ∃y ∃z f(x) = y expressing the totality of f with auxiliary vari-
ables z representing nodes of a polynomial-size circuit computing f . The EF+∀red proof
refutes the propositional formula f(x) 6= y by gradually replacing each variable from
z, y by the circuit it represents. If the totality of f has polynomial-size G0 proofs, by the
Σq1 witnessing property, cf. [Cook and Morioka 2005, Theorem 9], f is in NC1.

Notably, in Section 4.2 we showed that Frege+∀red and EF+∀red are p-equivalent
to their tree-like versions. This is open for G0 and G1, thus providing some further
evidence for the incomparability of Gentzen and Frege in QBF.

6.3.2. Formulas easy in Gentzen, but hard in Frege. We now provide three different prop-
erties that are easy for QBF Gentzen systems, but hard for EF +∀red. Our first condi-
tional result shows that there are Σq2-formulas with polynomial-size tree-like G1 proofs
but no polynomial-size EF+∀red proofs, and this result generalizes to stronger systems.
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THEOREM 6.8. Let i > 1. Assume f ∈ FPΣp
i is hard for P/poly. Then the formu-

las ‖∃y (|y| 6 p(|x|) ∧ f(x) = y)‖n, where p is a polynomial and f(x) = y is expressed
by a Σbi+1-formula, have polynomial-size Gi proofs and require super-polynomial-size
EF+∀red proofs. If f ∈ FPΣp

i [O(log n)] then Gi can be replaced by tree-like Gi .

PROOF. Since Ti
2 proves the totality of FPΣp

i functions [Buss 1986a], it proves the
totality of f and the proof can be transformed into a sequence of polynomial-size Gi

proofs [Cook and Morioka 2005; Krajı́ček and Pudlák 1990]. If the totality of f can be
shown by polynomial-size proofs in EF +∀red, then, by the Strategy Extraction Theo-
rem, f is in P/poly.

Similarly, Si
2 proves the totality of FPΣp

i [O(log n)] functions and such proofs translate
into sequences of polynomial-size tree-like Gi proofs [Buss 1986a; Cook and Morioka
2005; Krajı́ček and Pudlák 1990].

It seems that the separation above of tree-like G1 and EF+∀red by Σq2-formulas can-
not be improved to Σq1-formulas as it is tight in the following sense. If we had Σq1-
formulas ∃y An(x, y) with polynomial-size tree-like G1 proofs but without polynomial-
size EF+∀red proofs, this would imply that EF is not polynomially bounded: by the
witnessing theorem for tree-like G1, cf. [Cook and Morioka 2005, Theorem 7], there
would be polynomial-size circuits Cn such that formulas An(x,Cn(x)) are true, and so
¬An(x,Cn(x)) would be hard to refute in EF.

The QBF proof systems tree-like G1 and EF+∀red can be conditionally separated also
on the bounded collection scheme.

Definition 6.9. The bounded collection scheme BB(ϕ) is the formula

∃i < |a| ∃w < t(a)∀u < a∀j < |a| (ϕ(i, u)→ ϕ(j, [w]j))

where ϕ(i, u) is a formula which can have other free variables, [w]j is the j-th element
of the sequence coded by w, and t(a) is a concrete L-term depending on the choice of
the encoding of sequences.

Roughly, BB(ϕ) says that u’s witnessing ϕ(i, u) can be collected in a sequence w:

∀i < |a| ∃u < a, ϕ(i, u)→ ∃w < t(a)∀j < |a|, ϕ(j, [w]j).

THEOREM 6.10. The QBF proof system tree-like G1 has polynomial-size proofs of
‖BB(ϕ)‖n for all ϕ ∈ Σb1. In contrast, there exists ϕ ∈ Σb1 such that formulas ‖BB(ϕ)‖n
are hard for EF+∀red unless each polynomial-time permutation with n inputs can be
inverted by polynomial-size circuits with probability at least 1− 1/n.

PROOF. The upper bound follows from the S1
2-provability of BB(ϕ) for ϕ ∈ Σb1, cf.

[Buss 1986a, Theorem 14], and its transformation to tree-like G1 proofs [Cook and
Morioka 2005; Krajı́ček and Pudlák 1990]. For the lower bound we will use a result by
Cook and Thapen [2006] showing that Cook’s theory PV does not prove BB(ϕ) for all
ϕ ∈ Σb0 unless factoring is in probabilistic polynomial time.

Let a = 2n and ϕ(i, u) be the formula f(u) = [y]i for a polynomial-time permutation
f (defined by a Σb1 formula), and y encoding a sequence of n strings of length n.

Assume that EF+∀red has polynomial-size proofs of ‖BB(ϕ)‖n. By the Strategy Ex-
traction Theorem there are polynomial-size circuits B, C such that

∃u < 2n, f(u) = [y]C(y) → ∀j < n, f([B(y)]j) = [y]j . (24)

To invert f we proceed as follows. Given z ∈ {0, 1}n, pick randomly n strings si ∈ {0, 1}n
and let i0 be a position (a non-uniform advice) such that Pry[C(y) = i0] 6 1/n
where y’s are sequences of n strings of length n. Define yz,s to be the sequence
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−→ A0(x, y), A1(x, z)

−→ (A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0), (A0(x, v) ∧ ¬1) ∨ (A1(x, z) ∧ 1)

−→ ∀y, u ((A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0)), (A0(x, v) ∧ ¬1) ∨ (A1(x, z) ∧ 1)

−→ ∀y, u ((A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0)),∀y, u ((A0(x, y) ∧ ¬1) ∨ (A1(x, u) ∧ 1))

−→ ∃b∀y, u ((A0(x, y) ∧ ¬b) ∨ (A1(x, u) ∧ b)),∃b∀y, u ((A0(x, v) ∧ ¬b) ∨ (A1(x, z) ∧ b))
−→ ∃b∀y, u ((A0(x, y) ∧ ¬b) ∨ (A1(x, u) ∧ b))

Fig. 2. The tree-like G0 derivation in the proof of Theorem 6.11

of elements z, f(s1), . . . , f(sn−1) ordered so that [yz,s]i0 = z and let xz,s be the se-
quence of z, s1, . . . , sn−1 ordered so that f([xz,s]i) = [yz,s]i for i 6= i0. For random
strings z, s1, . . . , sn−1 we have that yz,s is a random sequence of n strings of length
n and Prz,s1,...,sn [C(yz,s) = i0] 6 1/n. Consequently, with probability at least 1 − 1/n,
f([xz,s]C(yz,s)) = [yz,s]C(yz,s) holds and by (24) the inverse of f on z is [B(yz,s)]i0 .

While the previous two results exhibited formulas easy for tree-like G1 and hard for
EF +∀red, we now show that even tree-like G0 can prove Σq2-formulas hard for EF+∀red
(modulo a hardness assumption).

For this we use a result by Bonet et al. [2000], who showed that Frege systems do not
admit the so called feasible interpolation property unless factoring of Blum integers
is solvable by polynomial-size circuits. (A Blum integer is the product of two distinct
primes, which are both congruent 3 modulo 4.)

It is possible to separate tree-like G0 and EF +∀red even under the assumption NP 6⊆
P/poly. The separating Σq2-formulas are of the form

∀x ∃y ∀z (SAT(x, y) ∨ ¬SAT(x, z))

and state that each propositional formula is either satisfiable or unsatisfiable. These
formulas have polynomial-size tree-like G0 proofs because their two-sorted formulation
is easily provable in the theory known as VNC1, the two-sorted version of tree-like G0,
cf. [Cook and Morioka 2005]. (In fact, this is already provable in the two-sorted logic
without the extra axioms of VNC1.) On the other hand, if these formulas were easy
for EF +∀red, by strategy extraction, we would get polynomial-size circuits for SAT. As
presenting this argument formally would require to introduce two-sorted theories of
bounded arithmetic and the corresponding machinery, we prove here only the separa-
tion based on the stronger assumption of the hardness of factoring.

THEOREM 6.11. There are Σq2-formulas with polynomial-size tree-like G0 proofs.
However, assuming factoring of Blum integers is not computable by polynomial-size
circuits, these formulas require EF+∀red proofs of super-polynomial size.

PROOF. Bonet et al. [2000] showed that there are propositional formulas A0(x, y),
A1(x, z) with common variables x such that A0(x, y) ∨ A1(x, z) have polynomial-size
Frege proofs but, unless factoring of Blum integers is computable by polynomial-size
circuits, there are no polynomial-size circuits C(x) recognizing which of A0(x, y) or
A1(x, z) holds for a given x.

Frege is p-equivalent to tree-like G0 on propositional formulas [Krajı́ček 1995] and so
it is possible to derive in tree-like G0 the sequents in Figure 2.

Therefore, the Σq2-formulas

∃b ∀y∀u ((A0(x, y) ∧ ¬b) ∨ (A1(x, u) ∧ b))

have polynomial-size tree-like G0 proofs.
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If these formulas had polynomial-size EF+∀red proofs, then, by the Strategy Extrac-
tion Theorem, there would be polynomial-size circuits computing b from x and thus
recognizing which of A0(x, y) and A1(x, u) holds.

We remark that the assumptions of Theorems 6.10 and 6.11 are stronger than the
assumption of Theorem 6.8. However, while factoring forms a good candidate for a one-
way function, it is not known if the existence of one-way functions implies the existence
of one-way permutations.

7. CONCLUSION
Our work opens up two lines of research that we believe might have a significant
influence on QBF proof complexity and beyond.

Exploring new QBF proof systems. The first of these is the study of natural and power-
ful QBF proof systems that correspond to ideas developed in propositional proof com-
plexity for many years. While we concentrate here on the hierarchy C -Frege+∀red of
new QBF Frege systems, our definitions introduce meaningful versions of algebraic
and geometric proof systems for QBF. These systems will be very interesting to study
from a theoretical perspective and also might provide an important stimulus on QBF
solving—analogous to the potential of integer linear programming and polynomial cal-
culus for SAT solving.

Understanding the transfer from circuit to proof complexity. As far as we know, for the first
time in the literature, our lower bound technique via strategy extraction gives a formal
and rigorous account on the relation between a circuit class C and proof systems using
lines from C . Building on the previous work of Beyersdorff et al. [2015] we establish
this relation for a full hierarchy of QBF systems. This yields very strong results in
QBF proof complexity. In the recent survey of Buss [2012], the propositional versions
of our results C.(i) and (iii) in Section 1.1 are referenced as ‘the main open problems at
the “frontier” of Cook’s program’.

We believe that this transfer has the potential to generate lots of further research,
both in QBF and indeed for further logics, possibly even including the most important
classical propositional case. As for QBFs, the hard formulasQ-f that we generate from
a Boolean function f have a special syntactic form, i.e., for all functions we use here
they are prefixed by ∃∀∃. Can we also apply our technique to conceptually different
types of QBFs? It is also possible that similar ideas are effective for further logics,
possibly modal or intuitionistic logics as they share the same PSPACE complexity, and
strong lower bounds are known for Frege systems in these logics as well [Hrubeš 2009;
Jeřábek 2009].
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Jan Krajı́ček and Pavel Pudlák. 1989. Propositional proof systems, the consistency of
first order theories and the complexity of computations. The Journal of Symbolic
Logic 54, 3 (1989), 1063–1079.
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Jan Krajı́ček and Pavel Pudlák. 1998. Some consequences of cryptographical conjec-
tures for S1

2 and EF . Information and Computation 140, 1 (1998), 82–94.
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