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Chapter 2

Quantified Boolean Formulas
Olaf Beyersdorff, Mikolds Janota, Florian Lonsing, Martina Seidl

2.1. Introduction

Motivated by the success achieved in practical SAT solving, quantified Boolean
formulas (QBFs), the extension of propositional formulas with existential and
universal quantifiers over the propositional variables, have become subject of in-
tensive research (cf. Chapter ??7 and Chapter ??). Over the last two decades,
many different solving approaches have been presented forming a wide, heteroge-
neous landscape of solving paradigms. While in SAT solving conflict-driven clause
learning (CDCL) is clearly the predominant solving paradigm (cf. Chapter ?7?),
the picture for QBFs is less obvious. Two paradigms together with preprocess-
ing have particularly impacted the progress in QBF research over the last years:
search-based QBF solving and expansion-based solving.

From empirical evaluations [LSVGI6, lJJK™ 14, [PS19], it has become evident
that search-based solvers (which have variants of Q-resolution as underlying proof
systems) and expansion-based solvers (which are based on the VExp+Res proof
system) often show orthogonal behavior. This observation was concisely captured
by the means of proof theory. In particular, separation and simulation results be-
tween the different variants of Q-resolution and VExp+Res give a detailed picture
of the relations between the different proof systems. For such proof-theoretical
characterizations, however, it turned out that propositional techniques are insuf-
ficient for QBFs. To this end, novel separation techniques—for example, based
on strategy extraction—have been introduced that provide an elegant tool for
comparing proof systems.

In practical QBF solving proofs play another important role. Proofs that
are polynomially checkable can be used to certify the correctness of the result
of a QBF solver. In addition, they can be used to extract strategies in terms of
so-called Skolem and Herbrand functions. For example, in the case of a synthesis
problem [BKSI4], such functions represent the required implementation or, in the
case of planning, such functions represent the plan [EKLP17].

To obtain certification and strategy extraction also if preprocessing is used,
the QRAT proof system has been introduced. It generalizes the RAT proof system
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for SAT which is currently the formal foundation of the certificates produced by
recent SAT solvers (see Chapter ?7).

Currently, we see a strong interaction between proof theory and solving. In
this chapter, we survey this connection between theory and practice. In Sec-
tion 2.3 QCDCL and Q-resolution are presented and in Section we show how
expansion-based solving and VExp+Res are related. In Section we discuss
proofs for recent preprocessing techniques. An overview of strategy extraction
from proofs is presented in Section [2.6] Section [2.7] compares different proof
systems used in solving and introduces other powerful proof systems that are
currently not implemented in any solver.

2.2. Preliminaries

A literal | is a Boolean variable = or its negation # and var(l) = z. By I, we
denote the complementary literal of [, i.e., if | = x then [ = Z and if [ = Z then
I = x. A clause is a disjunction of literals (sometimes also interpreted as set
of literals) and a cube is a conjunction of literals. The empty clause is denoted
by L or equivalently as the empty set () of literals. A propositional formula in
congunctive normal form (CNF) is a conjunction of clauses. We sometimes write
a formula as a set of clauses. By var(y) we denote the set of variables that occur
in a formula 1.

The quantified Boolean formulas (QBFs) considered in this chapter are in
closed prenex conjunctive normal form (PCNF). A QBF Il in PCNF consists of a
matrix ¢ and a prefix Il = Q1 X5 ... QX where Q; € {3,V}, Q; # Qi41, and X;
are pairwise disjoint sets of variables. Furthermore, var(¢)) C var(II) where var(II)
denotes the union of the sets X;. If z € X;, we say that z is quantified at level i
and write lv(z) = 4; we write lv({) for Iv(var(1)). If lv(l) = ¢, quant(II,1) = Q;. We
call Q; X; a quantifier block; Q1 X7 is the outermost quantifier block and Qy X}, is
the innermost quantifier block. For two variables x,y, we have z <1 y iff € X;
and y € X; and 7 < j.

We use the standard recursive definition of the QBF semantics (we also write 1
for true and 0 for false). The QBF consisting only of the constant 0 is false and
the QBF consisting only of the constant 1 is true. A QBF VzIly is true iff
IIy[0/z] and IIip[1/x] are true, where IIy[t/x] denotes the replacement of z by
t. Further 3zIly is true iff IItp[0/x] or IIep[1/x] is true. Often the evaluation
of a QBF Q1 X7 ... 9, Xy () is seen as a game between the universal and the
existential player. In the i-th step of the game, the player Q; assigns values to all
the variables X;. The existential player wins the game iff the matrix 1 evaluates
to true under the assignment constructed in the game. The universal player wins
iff the matrix 1) evaluates to false. For a universal variable u (an existential vari-
able e), a strategy is a Boolean function over the existential (universal) variables
that occur to the left of u (e) in the prefix. A QBF is true (false) iff there ex-
ists a winning strategy for the existential (universal) player, i.e. if the existential
(universal) player has a strategy for all existential (universal) variables such that
this player wins any game when assigning the variable according to this strategy.
The Boolean functions forming a winning strategy of the existential (universal)
player are often called Skolem functions (Herbrand functions). Note that given a
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closed QBF, a winning strategy always exists for one and only one of the players.

A proof system for a language L over an alphabet I' (usually binary) is a
polynomial-time computable partial function f : I'* — I'* with rng(f) = L
[CR79]. If f(z) = y then z is called an f-proof for y. The important features are
soundness of the proof system (captured by rng(f) C L) and completeness of the
system (captured by L C rng(f)). If L consists of all propositional tautologies,
then f is called a propositional proof system, and proof systems for the language
TQBF of true QBFs are called QBF proof systems. Equivalently, we can consider
refutation proof systems where we start with the negation of the formula that we
want to prove and derive a contradiction.

A proof system S for L simulates a proof system P for L if there exists a
polynomial p such that for all P-proofs 7 of z there is an S-proof 7’ of x with
|7’| < p(|n|) where |7| (resp., |7’|) denotes the length of 7 (resp., #n’). If such
a proof 7’ can even be computed from 7 in polynomial time we say that S p-
simulates P. The system S is called stronger than P if S simulates P, but P
does not simulate S. The latter is typically shown by exhibiting a sequence of
formulas that require superpolynomial (often even exponential) size proofs in P,
but have polynomial size proofs in S. The systems S and P are incomparable if
neither S simulates P nor P simulates S.

For proof systems based on lines and inference rules (e.g., all the resolution-
based proof systems below where lines are clauses), proofs can be classified as
either dag-like or tree-like. In tree-like proofs every derived line can be used at
most once in a further inference, implying that the proof graph is a tree. If
derived lines can be reused, proofs are called dag-like. Often, as e.g., in resolution
(both propositionally and in QBF), the dag-like proof system is stronger than the
tree-like system [BEG.J00].

2.3. Proof Systems Based on Q-Resolution

Since the 1960s, the resolution principle [Rob65] has become a state-of-the art
approach in various domains of automated reasoning, cf. [BGOI]. In the field
of propositional satisfiability testing (SAT), groundbreaking technology to lever-
age the power of resolution in CDCL SAT solvers was developed in the late
1990s [MSS99] and early 2000s [MMZT01, ZMMMOT], cf. Chapter ??. Almost
20 years later, resolution still is the basic paradigm that underlies modern SAT
solvers, which selectively integrate resolution with more powerful proof systems
to potentially generate shorter proofs [WHJ14, [HKBI17].

The resolution principle has been lifted to the QBF setting [KBKF95], along
with the CDCL approach called QCDCL [GNTO0G6, Let02, [ZM02a]. In the fol-
lowing, we present the Q-resolution calculus and variants of it as the formal
foundation of QCDCL. Additionally, we point out how the workflow of QCDCL
interacts with the rules of the Q-resolution calculus.

2.3.1. The Q-Resolution Calculus

Resolution is one of the best studied propositional proof systems (cf. Chap-
ter ??). It is a refutational proof system manipulating unsatisfiable CNFs as
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cu{i} for all z € vars(Il): {z,z} Z (C U{i}), quant(IL,1) =V, (red)
C and I’ <y1 { for all I’ € C' with quant(IL,!’) = 3
C1 U {p} CoU{p} for all x € vars(Il): {z,Z} Z (C1 UCy), (res)
C1UCsy ﬁ¢017p€027 and quant(H,p)ZH
el for all z € vars(IT): {z,2} Z C and C € ¢ (cl-init)

Figure 2.1. The rules of the Q-resolution calculus (Q-Res) [KBKF95| for PCNF ¢ = It

sets of clauses. The only inference rule is defined by

Gu{py G U{p}
Ci1UCy

(propres)

where C; and Cy are clauses and p is the pivot variable. A resolution refutation
derives the empty clause (). The generalization to QBF is shown in Figure [2.1

We refer to a clause containing complementary literals [ and [ as being tau-
tological or a tautology. Non-tautological clauses occurring in the CNF of the
given QBF ¢ are selected by applications of the axiom rule The resolution
rule is similar to the resolution rule in propositional logic. However,
the pivot variable p is restricted to existential variables and derived clauses must
not be tautological.

The main distinguishing feature between propositional resolution and Q-
resolution (Q-Res) is the rule the reduction operation. Universal reduction
eliminates trailing universal literals locally from a non-tautological clause C' with
respect to the linear quantifier ordering. A universal literal [ is trailing in a clause
C if all existential literals I’ € C are smaller than I. Note that universal reduc-
tion is the only rule in the calculus that allows to eliminate universal literals from
clauses. As such, it is crucial to obtain the empty clause in refutations of formulas
in PCNF. In a more general setting, it was shown that a QBF proof system can be
obtained [BBC16] by combining the universal reduction rule with propositional
proof systems.

Example 2.3.1. Consider the PCNF ¢ = 3x1, x3, 24Vys53x2((Z1 V 22) A (23 V
Ys V Ta) A (x4 VY5 V T2) A (T3 V T4)). We resolve (Tg V T4) and (x4 V 75 V T2) on
the existential variable x4 to obtain Cy = (Z3V ¢5 V Z2). Note that the universal
literal y5 cannot be reduced by universal reduction due to literal . We resolve
Co and (Z1 V z3) on x9 and get C; = (Z1 V T3 V §5). Now literal g5 is trailing in
(4 and can be reduced, which produces the clause Co = (Z1 V Z3).

The rules in Figure define the common variant of Q-resolution, which is
sound and refutational-complete for QBFs in PCNF [KBKE95]. The effect of
imposing restrictions in the side conditions of the rules of the calculus reduces
the number of possible proofs, often resulting in longer refutations. However,
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cu{y L€ {y,7,y*}, quant(IL,}) =V, and
C I <plforall I’ € C with quant(I, ') = 3 (idgred)
Ci U Coufsy PEC1,p&C2 quant(Il,p) =3,V € C1,lz € Ca:
LU A{p} 2 U{p} if var(l1) = var(l2) and (I1 # l2 or l1 merged) then  (ldgres)
C1UC, quant(Il,11) = V and lv(p) <p Iv(l1)

Figure 2.2. The long-distance Q-resolution calculus (LD-Q-Res) [ZM02al, [BJ12| consists of the
rules shown above in addition to the axiom rule from Figure A literal y* is called a

merged literal and denotes the occurrence of a pair y and y of universal literals.

lifting these restrictions, either individually or in combined ways, results in more
powerful variants of Q-resolution.

In the following, we discuss variants of Q-resolution that result from lifting
restrictions or from defining rules that provide additional reasoning capabilities.

2.3.2. Extensions of Q-Resolution

Long-Distance Q-resolution. The CDCL paradigm for SAT solving was lifted
to the QBF level soon after its inception [GNTOG, Let02 [ZM02a]. When deriving
a learned clause C' in QCDCL analogously to CDCL following the first unique
implication point (1-UIP) principle, C might end up being a tautology caused by
a pair of complementary universal literals [ZM02a]. Resolution steps producing
tautologies are called long-distance resolution steps because the tautology is pro-
duced by resolving two clauses that contain two literals that appear positively in
one clause and negatively in the other. In general, deriving and using tautological
clauses as part of refutations is unsound, as the following example shows.

Example 2.3.2. Consider the PCNF ¢ = Vz3y((zVy)A(ZVy)) which is obviously
satisfiable. In an attempt to produce a wrong refutation, we resolve the two
clauses on variable y by neglecting the side condition of rule which produces
the clause (z V Z). From this clause, we derive the empty clause by universal
reduction, neglecting the side condition of rule

In contrast to the observation made in Example[2.3.2] tautologies derived dur-
ing learning in QCDCL can be used in the same way as ordinary, non-tautological
learned clauses to prune the search space. In [BJ12], long-distance resolution (LD-
Q-Res) was formulated as a calculus shown in Figure In the following, we
use the common notation y* to denote the occurrence of the pair y V ¢ of com-
plementary universal literals in a clause. This special literal y* is called a merged
literal.

Tautologies resulting from resolution steps according to rule are al-
ways caused by complementary universal literals and never by existential ones.
Furthermore, for the soundness of the calculus, it is necessary to respect the
quantification level restriction of the pivot variable and the merged universal lit-
erals. Under that restriction, the wrong refutation in Example cannot be
produced. Furthermore, the QCDCL framework by construction guarantees that
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any tautologies derived during learning are derived under that restriction. Uni-
versal reduction by rule also allows the elimination of merged literals. The
ability to produce certain tautological resolvents makes LD-Q-Res stronger than
Q-Res [ELW13], cf. Section

Example 2.3.3. Consider the PCNF ¢ = Jx1, 3, 24Vys53x2((T1 Vre) A3 Vys V
T2) AN(@a Vg5V T2) A (T3 V Ta)A(23VysVT2)) and the clause Cy = (T3 V §5 V Ta)
obtained by resolving (Z3 V Z4) and (z4 V 5 V T2) on the existential variable zy4.
We carry out a long-distance resolution step on Cy using the clause (x3V ys V T2)
and the pivot variable x3, which results in C; = (y% V Z2). Note that the pivot
variable x3 has a smaller quantification level than the literals y5 and g5 that result

in the merged literal y} according to rule

Universal Pivots, Long-Distance Q-Resolution, and Combinations. The
restriction of the quantifier type of pivot variables in Q-Res shown in Figure [2.1
can be relaxed to allow both existential and universal pivots in resolution steps.
The resulting variant is called QU-resolution (QU-Res) and was shown to be
stronger than Q-Res [VGI12a]. Despite the possibility to eliminate universal literals
from clauses by resolving on them when constructing a resolution refutation, the
universal reduction rule is still crucial for the completeness of QU-Res.

Further variants of Q-resolution were obtained by combining the relaxation of
the quantifier type restriction of pivot variables and the generation of certain tau-
tological resolvents [BWJI14]. LQU-resolution extends long-distance Q-resolution
by also admitting universal pivot variables like in QU-resolution. However, res-
olution steps on universal pivots must not produce tautological resolvents. This
restriction is relaxed in LQU+-resolution (LQU™-Res), which is thus a generaliza-
tion of LQU-resolution. For the soundness of LQUT-Res, it is necessary to apply
a stronger variant of the quantifier level restriction of pivot variables and merged
literals than in long-distance resolution by rule

Regarding proof complexity, both QU-Res and LD-Q-Res are stronger than
Q-Res while being incomparable [BWJ14] to each other. LQU™-Res is stronger
than both QU-Res and LD-Q-Res (cf. Section [2.7).

Reductionless Q-resolution [BBM19, [PSS19d| is a variant of LD-Q-Res which
does not include the universal reduction rule (Figure . This variant was
presented under the name Q¥ -resolution [BJK15] and implemented in the solver
GhostQ [KSGCI(]. A resolution refutation in reductionless Q-resolution does not
end with the derivation of the empty clause but with a clause that contains only
universal literals. Such clause could be reduced to the empty clause by universal
reduction. In an early backtracking algorithm [CGS98] that precedes QCDCL,
a similar rule was used to backtrack if a clause containing only universal literals
was encountered during the search.

Enhanced Universal Reduction: Dependency Schemes. The linear order-
ing of the quantifier prefix of PCNFs has to be taken into account in practical
QBF solving as well as in the theoretical context of QBF calculi, e.g., in the
side condition of the universal reduction rule in the Q-resolution calculus.
The quantifier ordering imposes restrictions as it both limits the freedom of a
QBF solver to assign variables and the potential number of universal literals
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eliminated by universal reduction. As a way to overcome these restrictions, de-
pendency schemes [Sam08|, [SS09] were introduced to relax the linear quantifier
ordering.

Informally, a dependency scheme is a binary relation D over the set of vari-
ables of a QBF that expresses variable independence. Given two variables x and y
which are quantified differently, if (x, y) € D then a QBF solver may safely assume
that the value of y can be chosen independently of the value of z. Otherwise, if
(x,y) € D, then it has to assume that the value of one depends on the value of
the other. Neglecting the dependency of the values of variables, e.g., bears the
risk of unsound results in solving.

Dependency schemes can be regarded as an approximate representation of the
actual independence of variables. For two variables, actual independence means
that their values can be chosen independently from each other without affecting
the result of a semantical evaluation of a QBF. Checking whether two variables
in a QBF are independent is as hard as solving the QBF itself, i.e., PSPACE-
complete. Therefore, dependency schemes represent sound approximations of the
actual independence of variables in a QBF. These approximations result in the
presence of spurious dependency pairs. A dependency scheme D may contain
spurious dependency pairs (x,y) such that (x,y) € D but still the values of x
and y can be chosen independently. A dependency scheme D is considered to be
more refined than some other scheme D’ if D contains fewer spurious dependency
pairs than D’. The potential amount of spurious dependency pairs present in a
dependency scheme is expressed by a hierarchy of schemes defined by different
levels of refinement. For practical applications, only dependency schemes are of
interest that can be computed in polynomial time such as the standard dependency
scheme [SS09] or the resolution path dependency scheme [VG11)[SS12], the latter
being the most refined, practically relevant scheme currently known. In contrast
to that, the trivial dependency scheme exactly represents the linear ordering of
the quantifier prefix and thus is least refined.

With respect to Q-resolution calculi, dependency schemes are relevant in that
they can be used to strengthen the universal reduction rule as follows.

Definition 1 (Dependency-Aware Reduction [LBI0]). Let ¢ = IIy) be a PCNF
and D be a dependency relation represented by a dependency scheme.

cCu{l} C' is a clause, quant(IL, 1) =V, and, den-red
—C  (ILI)gDforalll € C with quant(IL,/') =3 (dep-red)

Dependency-aware universal reduction by rule generalizes the tra-
ditional universal reduction rule of the Q-resolution calculus (Figure .
Instead of the linear ordering of variables (<p) in the prefix of the PCNF ¢,
rule makes use of a dependency relation D. A universal literal | can be
eliminated from a clause C if all existential literals I’ in C' are independent of [.

Note that rule indeed generalizes traditional universal reduction by
rule since it can be instantiated by the trivial dependency scheme. With
dependency-aware universal reduction, it is possible to potentially reduce univer-
sal literals that cannot be reduced by traditional universal reduction, depending
on the actual dependency relation used in rule [dep-red
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Q-resolution calculi can be equipped with the dependency-aware universal
reduction rule based on tractable dependency schemes. Using the reflexive reso-
lution path scheme, e.g., a variant of Q-resolution is obtained that is stronger than
traditional Q-resolution [BBIT] (cf. Section [2.7.5). Certain theoretical properties
of dependency schemes were studied that are sufficient to prove the soundness of
combining these schemes with universal reduction in Q-resolution calculi, includ-
ing long-distance Q-resolution [BB16, [PSS16, [PSS19al, [PSS19¢, [SST6].

The benefits of exploiting variable independence were also empirically ob-
served in the context of solving. Early approaches are based on exploiting quan-
tifier structure that is present in the parse tree of a given QBF [GNTOQT7]. Alter-
natively, such structure can be (partially) reconstructed from a PCNF by shifting
quantifiers inside the CNF part [AB02, [Ben05], which is also called mini-scoping.
For example, the expansion-based solver Quantor [Bie04] applies a limited form
of mini-scoping to allow for a better scheduling of expansion steps. Dependency
schemes can be regarded as a generalization of mini-scoping. Already the stan-
dard dependency scheme [SS09], which is less refined than the resolution path
scheme [VG11], [SS12], potentially allows to identify more independent variables
than mini-scoping [LB09].

Since QCDCL solvers rely on Q-resolution, dependency-aware universal re-
duction can be applied to leverage variable independence in QCDCL. The QCDCL
solver DepQBF [LE17] tightly integrates dependency-aware universal reduction
via the standard dependency scheme in the QCDCL workflow [LBI10]. Addition-
ally, it employs variable independence to generate assignments in QCDCL on a
more flexible basis than in traditional QCDCL, which operates with the linear
quantifier order. The approach implemented in DepQBF was generalized in the
QCDCL solver Qute [PSS19a, [PSS19b], which starts with an empty dependency
relation and learns dependency pairs on demand.

Q-Resolution with Symmetries. Another powerful extension of the basic Q-
resolution calculus (cf. Figure[2.1)) exploits symmetries [KSI8b] of a given formula.
A symmetry for a QBF IIt is a bijective map o: L — L where L = {x,Z | x €
var(II)} such that for all z € var(Il), o(x) = o(Z) and z, o(z) belong to the same
quantifier block. Further, if o is applied to all literals in v, then 1 has to map to
itself (up to the order of literals and clauses). Next we introduce the symmetry
rule as an extension of Q-Res.

Definition 2 (Symmetry Rule [KS18al). Let ¢ = ITe) be a PCNF.

C is a clause, o is a symmetry of Iy (sym)

a(C)

Formula families that are hard for Q-Res such as QParity, or KBKF,, have
polynomial-size proofs [KSI8a] with the symmetry rule (cf. Section [2.7.5]).

2.3.3. Solving with Q-Resolution: QCDCL
Conflict-driven clause learning, called QCDCL [GNTO06, [Let02] [ZM02al, [ZM02b)],

is a generalization of the CDCL approach for SAT solving, cf. Chapter 77. A
QCDCIL solver derives new learned clauses during the search with the purpose to
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PCNF ¢ Conflict/Solution Decision
——F—— > QBCP Detection: Makin
A=0 ¢/ ¢ =Lorg =T? NO g

¢’ = T, no open subcases

=T
’ e ’
ATCA A=A o=
Cr#0 CL=10 SAT

Figure 2.3. Flowchart of QCDCL. For simplicity of the presentation, cube learning is not
shown. Instead, we assume that backtracking is carried out immediately after a satisfiable
subcase has been detected (¢' = T).

prune the search space. Depending on the variable assignments that are succes-
sively generated, the solver may also produce learned cubes. Dual to clauses, a
cube is a conjunction of literals. While learned clauses prune parts of the search
space that contain falsifying assignments, learned cubes prune parts that contain
satisfying assignments. Propositional resolution and Q-resolution [KBKF95] are
the proof systems that underlie CDCL and QCDCL. For unsatisfiable and satis-
fiable QBFs, a QCDCL solver can produce clause and cube proofs, respectively.
Cube proofs are formulated in a calculus that is dual to Q-resolution of clauses.
Note that for a formula in PCNF, initially no cubes are given. Cubes are added
to the formula only whenever an assignment satisfying the CNF is found.

Despite the similarity between CDCL and QCDCL on a theoretical level,
clause learning in a QCDCL solver is more complex than in a CDCL solver. This
is due to the interaction between the QCDCL workflow and the rules of the Q-
resolution calculus. In the following, we point out this interaction on an abstract
level. In particular, we do not give a comprehensive presentation of QCDCL and
refer to Chapter 77 instead. Moreover, for simplicity we focus on clause learning
and hence omit cube learning in our presentation of QCDCL.

We represent a variable assignment A as a set of literals such that v € A
if variable v is assigned true, and —v € A if v is assigned false, and v € A and
-v ¢ A if v is unassigned. For a PCNF ¢ and an assignment A, ¢[A] is the
formula simplified under assignment A, i.e., the assigned variables are replaced
by the respective truth constants which are then eliminated in the standard way.
Figure [2.3] shows a high-level flowchart of the QCDCL workflow. The building
blocks are similar to CDCL: propagation in stage QBCP (quantified Boolean con-
straint propagation), decision making, learning, and backtracking. Given a PCNF
¢ = IIy, variable assignments are successively enumerated by means of QBCP
and decision making. The formula is simplified under the current assignment A
to obtain the formula ¢’. If ¢’ is not reduced to a syntactic truth constant L
or T then the current assignment is further extended by decision making and
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successive application of QBCP.

Otherwise, if ¢’ = T then a satisfiable subcase has been determined and
closed. In this case, if there are no more open subcases remaining to be explored,
then QCDCL terminates with the result that the input formula ¢ is satisfiable. If
there are open subcases remaining, then a certain part A’ of the current assign-
ment A is retracted during backtracking, and a new assignment A is generated.
In implementations of QCDCL, determining whether there are open subcases
left and backtracking after finding satisfiable subcases is driven by cube learn-
ing, which we omit in our presentation. Instead, we assume that backtracking is
carried out immediately after a satisfiable subcase has been detected.

Case ¢’ = | designates an unsatisfiable subcase, which triggers clause learn-
ing. A new learned clause Cp, is derived by Q-resolution using clauses depending
on assignment A. If Cp, is empty (Cr = 0), then QCDCL terminates with the
result that the input formula ¢ is unsatisfiable. In this case, a Q-resolution proof
of ¢ can be obtained by considering the derivations of the learned clauses. Oth-
erwise, if C, is non-empty (Cp, # 0) then it is added to formula ¢, backtracking
is driven depending on C, and a new assignment A is generated.

In the following, we describe the interaction of universal reduction and Q-
resolution with the workflow of QCDCL. The universal reduction rule of the
Q-resolution calculus (Figure is crucial not only for the derivation of clauses,
but also in the generation of assignments by propagation in QBCP. Similar to
BCP in CDCL, QBCP in QCDCL consists of unit literal detection. In addition to
BCP, QBCP also applies universal reduction to shorten clauses under assignment
A that is currently being generated. The combination of unit literal detection
and universal reduction potentially detects more assignments and shortens more
clauses than unit literal detection alone.

Definition 3 (Unit Literal Detection [CGS98]).

Given a QBF ¢, a clause C € ¢ is unit iff C = (1) and ¢(I) = 3. The existential
literal [ in C is called a wnit literal. Unit literal detection (UL) collects the
assignment {l} from the unit clause C' = (I). Unit literal detection applied to a
QBF ¢ collects the respective assignments from all unit clauses in ¢.

Learned clauses C'f, generated in QCDCL have the property that they become
unit after backtracking, similar to clause learning in CDCL. Such clauses are
asserting clauses and are generated according to, e.g., the 1-UIP scheme. Note
that the variables of unit literals in learned clauses are restricted to existential
ones. This is necessary for the combination of unit literal detection and universal
reduction in QBCP. In general, it is possible to equip QCDCL with sound variants
of clause learning and certain backtracking schemes where non-asserting clauses
are learned. Non-asserting clauses do not become unit after backtracking.

Definition 4 (QBCP). Given a PCNF ¢ and the empty assignment A = {},
ie. ¢[A] = ¢.

1. Apply universal reduction (UR) to ¢[A] to obtain ¢[A]".

2. Apply unit literal detection (UL) to ¢[A]" to collect new assignments.
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3. Add assignments found by UL to A, repeat steps 1 and 2 and stop if A does
not change anymore or if [A] = T or ¢[A] = L.

The result of QBCP applied to ¢ is an extended assignment A and a simplified
formula ¢[A]’ obtained from ¢[A] by UR.

Pure literal detection [CGS98] is another approach to generate assignments in
QBCP in addition to unit literal detection. It increases the capability of QBCP
to potentially generate assignments and shorten clauses. For simplicity of the
presentation, however, we do not present pure literal detection.

Example 2.3.4. Let ¢ be a PCNF as follows:
Vy5z|£1vy23$3,$4((§5 \/.1‘4) A\ (y5 \/.i‘4) A (.131 Viya V 574) A (531 Vx3V i‘4) A (ﬂg V i‘3))

Initially, no simplifications of ¢ by QBCP are possible. We assign y5 by decision
making to obtain assignment A = {y5}. The formula simplifies to

dlys] = o Vye Iz, xa((wa) A (21 V ya V Z4) A (T V 23V Ta) A (Y2 V T3))
By UL and UR, we obtain the following assignments and simplified formulas.
e By UL: ¢[ys, x4] = FJr1Vy2Tzs((z1 V y2) A (T1 V x3) A (J2 V T3)).
e By UR: ¢y, z4] = Fz1Vy23xs((21) A (T1 V 23) A (G2 V T3)).
o By UL: ¢lys, x4, 21] = VyoFw3((23) A (52 V Z3)).
e By UL: ¢[ys, w4, 71, 73] = Yy2((72))-
e By UR: ¢ys, x4, 21,23 = L.

A conflict (i.e., empty clause) is derived in the last step because the clause Cy =
(g2 V Z3) is falsified under the assignment that was generated by QBCP. Hence,
by the soundness of QBCP we have shown that ¢[ys] and ¢lys, x4, 1, 23] are
satisfiability-equivalent, i.e., ¢lys] is unsatisfiable. Since the decision variable ys
is universal, also ¢ is unsatisfiable. Note that in this example, universal reduction
is crucial to determine the unsatisfiability of ¢ because unit literal detection alone
cannot derive a conflict.

For every assignment [ collected by unit literal detection in QBCP the cor-
responding antecedent clause is recorded. The antecedent clause of assignment [
is the clause in the original PCNF ¢ that contains [ and became unit under the
current assignment obtained by QBCP. Given a conflict as in Example [2.3.4] the
falsified clause Cp, and the set of antecedent clauses of unit literals in the cur-
rent assignment, new learned clauses can be derived in QCDCL in a similar but
more complex way as in CDCL. We illustrate such a derivation in the following
example.

Example 2.3.5. Let ¢ be the PCNF from Example 2.3.4}

Vy5EIx1Vy23x3,x4((g5 \/.734) AN (y5 \/.i‘4) AN (.131 Viya V i‘4) A (i‘1 Vx3V 574) A (ﬂg V i‘g))
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Ys x4 1 x3 0

~_

Figure 2.4. Implication graph related to the application of QBCP in Example m Variable

ys5 is assigned as a decision.

The assignment generated by decision making and QBCP in Example 2:3:4] is
A = {ys, x4, 1,23}, with variables assigned in that ordering. The antecedent
clauses of the assignments {x4}, {z1}, and {z3} are Cy, = (Y5 V z4), Cy, =
(x1Vy2VZ4), and C,, = (T1 V3V T4), respectively. We resolve C,, and C,, and
obtain Cy = (g5 V x1) after universal reduction. Further, we resolve C; with C,,
and obtain Cy = (§5 V x3 V Z4), which we resolve with C,, to get C5 = (75 V x3).
Finally, by resolving C3 and the clause Cyp = (72 V Z3) that was falsified during
QBCP in Example we obtain the empty clause by universal reduction.

In Example 2.3.5] we constructed a Q-resolution proof of the given PCNF by
making what appears as an ad-hoc selection of clauses to be resolved. QCDCL
solvers use information gathered in QBCP in a systematic way to carry out res-
olution steps to derive learned clauses. Pivot selection in QCDCL is crucial as it
determines whether a Q-resolution or a long-distance Q-resolution derivation of
the learned clause is obtained. In practical terms, a wrong pivot selection may
result in failure to derive a learned clause.

In the following, we illustrate how the pivot selection influences the derivation
of a learned clause in QCDCL. To this end, we informally introduce the concept
of implication graphs.

Example 2.3.6. An implication graph related to the application of QBCP in
Example is shown in Figure |2.4L The implication graph contains a vertex
for every decision variable and variable assigned by unit literal detection. It also
contains a special vertex () representing the falsified clause. We add an edge (z,y)
if y was assigned by unit literal detection and T appears in the antecedent clause
of y. For example, Cp, = (Z1 V 3 V Z4) is the antecedent clause of assignment
{z3} and the edges (x1,x3) and (x4, z3) indicate that Z; and Z4 appear in C,;.

Implication graphs generated in QBCP are very similar to the ones generated
by BCP in CDCL. However, universal literals eliminated by universal reduction
are not explicitly represented by an edge. Hence, for example, the clause Cy =
(g2 V T3) that is falsified in Example has two literals but in the implication
graph in Figure there is only one edge from z3 to the special vertex (). We
illustrate the selection of pivot variables and its importance for the derivation of
learned clauses by the following example.

Example 2.3.7. Let ¢ be a PCNF as follows:
31‘1, x3,x4‘v’y53m2((f1 V 1‘2) A (1‘3 Vys V .fg) A (1‘4 V ys V i‘g) A\ (.fg V i‘4))

Suppose that we assign x; to true as a decision variable. Then we obtain the
assignment A := {x1,x2, 3,24}, in that ordering, by QBCP. Note that for ob-
taining assignments z3 and x4 universal reduction of y5 and g5 was applied.
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Figure 2.5. Implication graph related to the application of QBCP in Example [2.3.7 Variable
1 is assigned as a decision.

Figure 2.6. Derivation related to Example [2.3.7]

Figure shows the corresponding implication graph. The antecedent clauses of
assignments {x2}, {3}, and {z4} are Cy, = (T1 V 22), Cyy = (z3 VY5 V T2), and
Cy, = (x4 VT V T2), respectively, and Cy = (T3 V Z4) is the clause that is falsified
in QBCP.

Traditional QCDCL solvers derive learned clauses using Q-resolution (Fig-
ure . To this end, pivot variables are selected in reverse assignment ordering
and we start by resolving the falsified clause Cj with an antecedent clause. This
approach is similar to the pivot selection in CDCL SAT solvers. In our example,
we first resolve the falsified clause Cy with Cy,, since x4 was assigned last, and
the resulting clause with C,. However, this results in the tautology (yi V Z2), as
shown in Figure |2.6

To obtain a legal Q-resolution derivation of a learned clause, tautologies must
be avoided. The reason for the tautology produced in Example is that
complementary universal literals appearing in relevant antecedent clauses were
eliminated by universal reduction in QBCP. To avoid tautologies, such universal
literals must be eliminated by universal reduction during the derivation of the
learned clause. This can be achieved by selecting existential literals as pivots
that block the universal literals from being eliminated. To this end, pivots must
be selected in a more flexible way, i.e., not in strict reverse assignment ordering.

Example 2.3.8. Referring to Example and Figure the tautology can
be avoided by first resolving the intermediate clause (Z3 V §5 V Z2) with C,, on
variable x5 to obtain (Z; V Z3) after eliminating g5 by universal reduction. Note
that the pivot variable s is larger than the variable of the universal literal g5 in
the quantifier ordering. The clause (Z1VZ3) is further resolved with C,,, resulting
in (Z1 Vys V Tz). A final resolution step with C,, on variable x5 produces the
learned clause (Z1). The complete Q-resolution derivation is shown in Figure

The approach illustrated in Example guarantees that tautologies in
the derivations of learned clauses are always avoided [GNTO6]. The resulting
derivations are linear (cf. [CL73]). Informally, linear derivations consist of a single
chain of resolution steps where every clause that appears in the derivation is either
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(ff'3 Vv (E4) (1‘4 Vys V (EQ)

N

(.ff,g Vys V .ffg) (.ff,l vV 332)
(.ff,l V z3V 55)

|
((fl V ff'3) (1‘3 Vys V i‘g)
N S
(fl Vys V fz) (fl \% :EQ)
N S
(Z1 \|/y5)
(Z1)

Figure 2.7. Derivation related to Examplem Nodes having one parent represent the result

of universal reduction steps.

a given clause or the result of a resolution step that uses the immediate previous
resolvent in the chain. Note that in Example [2.3.8| pivot variables were selected in
the ordering x4, x2, x3, x2, which is in contrast to the reverse assignment ordering
x4, T3,29. However, this approach has an exponential worst case [VGI12a]. The
size of the derivation of a single learned clause may be exponential in the size of the
implication graph because universal literals eliminated in parts of the derivation
may later be reintroduced. In the chain of resolution steps in Figure 2.7 the
universal literal 5 was first eliminated but later literal y5 was introduced. Hence
we had to select variable x5 as pivot a second time.

As a remedy to the exponential worst case, long-distance Q-resolution deriva-
tions of learned clauses can be produced. With this approach, pivots can al-
ways be selected in reverse assignment ordering [ELW13|, which is similar to
the pivot variables selection in CDCL SAT solvers. Moreover, the size of the
long-distance Q-resolution derivation of a learned clause is linear in the size of
the respective implication graph. Quaffle [ZM02a] was among the first solvers
that applied long-distance Q-resolution for clause learning. Figure shows a
long-distance Q-resolution derivation of the learned clause (Z;) related to Exam-
ples [2:3.7 and 238

As an alternative to long-distance Q-resolution derivations, traditional Q-
resolution derivations of learned clauses can be generated based on QPUP (QBF
pseudo unit propagation) clauses [LEVGI3|. In this approach, resolution steps
are carried out starting from certain points in the implication graph and the
resolution process proceeds towards the falsified clause. This is in contrast to
traditional QCDCL and CDCL SAT solvers, where the resolution process starts
at the falsified clause and proceeds towards a unique implication point. In Ex-
ample we actually constructed a refutation following the QPUP approach,
see also the related implication graph in Figure The sizes of the Q-resolution
derivations of learned clauses produced by QPUP-based learning are always lin-
ear in the size of the implication graph. In contrast to Q-resolution derivations
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Figure 2.8. Long-distance Q-resolution derivation of the learned clause (Z1) related to Exam-
ples[2:377] and [2:3.8] The derivation continues the one shown in Figure [2.6]

obtained by systematically avoiding tautologies (Example and Figure ,
which are linear (i.e., single chains of resolution steps) but may have exponential
size, QPUP derivations in general are non-linear and have the form of a directed
acyclic graph (DAG).

We presented several ways to enhance the traditional Q-resolution calcu-
lus (Figure . These include stronger Q-resolution variants, i.e., variants of
rule and stronger variants of universal reduction (rule based on depen-
dency schemes. The Q-resolution calculus can also be strengthened by a more
general variant of the axiom rule[cl-nifl This general variant employs assignments
generated in QCDCL and calls to a QBF oracle.

Definition 5 (Generalized Axiom |[LBB™15, [LEST6]). Let ¢ = Il be a PCNF.
The generalized axiom is defined as follows.

A is a (partial) assignment generated in QCDCL,
el #[A] is unsatisfiable, (gen-cl-init)
and C = (\/;c4 1) is a clause

The generalized axiom can be added to the Q-resolution calculus
in addition to the traditional axiom in Figure 2.1} Furthermore, it can
be combined with any variants of the Q-resolution and universal reduction rules.
Applications of the axiom rule require to check the satisfiability of ¢[A]. Since
this problem is PSPACE-complete in general, for practical applications these
satisfiability checks must be bounded and hence are incomplete. If ¢[A] is found
unsatisfiable, then the clause C' can be derived and used as an ordinary learned
clause in QCDCL. Note that learning C is sound only if A is an assignment
generated in QCDCL.

Any QBF decision procedure can be used as an oracle to carry out the sat-
isfiability test in the side condition of axiom Due to this property,
the general axiom acts as an interface to integrate arbitrary decision procedures,
and hence proof systems, in QCDCL. This way, it is possible to benefit from the
combination of proof systems such as Q-resolution and, e.g., bounded expansion
by means of clause learning. The resulting variant of QCDCL has the potential
to produce proofs that are exponentially shorter than the proofs produced by
traditional QCDCL.
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Similar to the clause-based variant in Definition [5] a dual, cube-based variant
can be formulated |[LBBT15| for enhanced cube learning.

2.4. Expansion-Based Proof Systems

Taking a different approach than QCDCL, a number of solvers reduce QBF to
SAT. Most commonly, they rely on iterative elimination of quantified variables
until only one type of quantifier is left. Once the formula contains a single type
of quantifier, an off-the-shelf SAT solver is invoked.

One of the first solvers taking this approach is the solver QUBOS [AB02],
presented in 2002, which expands one kind of quantified variables inside-out. The
kind of quantified variables to be expanded is chosen according to some heuristics.
For universal variables expansion is performed as follows. If a QBF contains a
subformula Vz¢ such that ¢ contains no further universal quantifiers, then V¢ is
replaced by the conjunction (4[0/x] A ¢[1/x]). The approach works analogously
for existential quantification. Several simplifications are applied to restrict the
space consumption of the solver.

The solver Quantor [Bie04] also expands the innermost universal variables,
but in contrast to QUBOS, it is designed to work on PCNF only. Consider the
QBF

Mz((CiV)A . AN(CuVE)AN(DIVE)AN ... (Do VI)ANEL A .. Ep)

where C;, D;, E), are clauses neither containing = nor . The expansion of the
innermost existentially quantified variable x would result in the non-PCNF QBF

IH(((C1A...ANC) V(D1 A..ADR)ANET A ... NE)).

For restoring the PCNF structure of this formula the Cartesian product of clauses
C; and D; has to be taken. To keep the PCNF structure and to avoid the extra
transformation step, Quantor removes innermost existential variables in the style
of the Davis-Putnam decision procedure (also known as variable elimination, see
Chapter ?7?). To eliminate the variable z of the formula above, all resolvents of
(C; V) and (D; V Z) are added to the formula. Then the clauses containing x
or T are removed. Hence, variable elimination directly returns the same formula
in PCNF that would have been obtained by expanding x and performing the
additional normal form transformations.

Later, the solver Nenofex [LBO0§| implemented the direct expansion of ex-
istential variables by giving up the requirement that the formula has to be in
PCNF. The solver QMRES [PV04] follows a similar approach but tries to mit-
igate the size of the expansion by representing sets of clauses as ZBDDs. The
solver AIGSolve [PS09] operates on And-Inverter Graphs (AIG) and solves QBFs
by successively eliminating the innermost quantified variables.

A different take on elimination is adopted in the solver sKizzo [Ben04], which
operates on a PCNF input and eliminates only universal variables. This, however,
requires the introduction of fresh existential variables. The reason for such new
variables is that if the variable z is eliminated from a formula Vz3y(¢), the result
is no longer prenex: Jy(¢[0/z]) A Jy(¢p[1/z]). To get back to prenex form, fresh
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variables are introduced: 3y'y" (4[0/z, ' /y]| Ad[1/x,y"” /y]). In sKizzo the process
of introducing fresh variables is referred to as propositional Skolemization because
effectively the fresh variables correspond to the individual points of a Skolem
function for the original existential variable.

Solvers relying on full expansion of quantifiers inherently suffer from large
memory consumption. Some solvers counter this issue by expanding quantifiers
gradually but at the cost of multiple SAT calls. This approach was pioneered by
the solver RAReQS [JMSTIL [JKMSC12, [JKMCI6] and followed by QELL [THJI15]
and Ijtihad [BBH™18|. While the former two QBF solvers rely on one SAT solver
instance per quantifier block, the latter one uses only two SAT solvers: one for
dealing with the existentially quantified variables and one for dealing with the
universally quantified variables.

At the proof level, solving by expansion corresponds to the proof system
VExp-+Res [IMS13, [TMI15] discussed in Section 2.4.1] Sections and
describe the algorithms AReQS and RAReQS, where AReQS accepts only 2QBF
inputs and RAReQS extends AReQS by recursion to an arbitrary number of
levels. Sections and connect the algorithms to the VExp-+Res system.

2.4.1. The Calculus VExp+Res

The VExp+Res calculus provides a transformation that enables refuting QBF
by classical propositional resolution [JMS13| [TM15]. This transformation stems
from the idea that the existential player needs to respond to any assignment
to the universal variables, but the player may respond differently to different
assignments. To represent the different choices of the existential player, VExp+Res
annotates existential variables by the relevant assignments to the universals.

The calculus is defined in Figure [2.9] It comprises two rules. The Axiom
rule introduces new annotated clauses into the proof and the Res rule enables
resolving them. An annotated clause is obtained by choosing a clause C' from the
matrix and an assignment 7 to all the universal variables. The clause C' is then
transformed by applying 7 to it and annotating each existential variable by [7].
The operation z!™) annotates = with the assignment 7 restricted to the universal
variables preceding z in the quantifier prefix. Note that in contrast to the calculi
presented in the previous section, no special treatment of tautologies is necessary.
The rest of the proof is carried out by resolving the annotated clauses. A proof
in VExp+Res that derives the empty clause, is called a refutation.

Note that the Axiom rule of the calculus potentially enables introducing an
exponential number of annotated clauses. However, if the rule is applied to some
assignment 7 and clause C' such that 7 assigns some of the literals of C' to true,
the clause is reduced to true, denoted as T; such clause is useless for the rest of
the proof. Observe also that since 7 always assigns all universal variables, there
are no universal literals in the annotated clauses. At the end of this chapter,
Section discusses more general proof systems that enable assigning only some
universal variables.

Example 2.4.1. Figure shows a possible VExp+Res refutation of the formula

de1Vujusdes ((61 Vur V 62) N (él Vu V 62) A (UQ V ég))
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(Axiom)
{Z[T] |1 € C,1is existential} U {7(1) | I € C,l is universal}

C' is a clause from the matrix and 7 is an assignment to all universal variables.

CrU{z"} CoU{z"}
CpLUC

(Res)

Figure 2.9. The rules of VExp+Res (adapted from [JM15]). The annotation z[7] considers only

the universal variables that precede z in the prefix.

Jde1Vujuzdes
[u3V ]

0/u1,0/u2 1/u1,0/u2 0/u1,0/ug 1/u1,0/us

[ég/uho/uz] [521/11170/%]

[eg/ul,o/w V e;/“170/u2]

e;/uLO/UQ

Figure 2.10. An example refutation in VExp+Res

The matrix clauses are depicted as rectangles and the annotated clauses as
rectangles with rounded corners. The example demonstrates some distinctive
features of the calculus. The clause usV é5 is expanded in two different ways. The
annotated clause ey """ v/ e2/"1%/"2 contains two versions of the variable es.
Intuitively, this clause tells us that e; should be true in one of the two places,

when both u; and us are false or if u; is true and wus is false.
2.4.2. AReQS: Expansion-based solving for 2-level QBF

This section presents the algorithm AReQS [JMSTI], which decides closed for-
mulas with two levels of quantification, i.e., VX3Y ¢ or IXVY ¢. The algorithm
enables natively solving formulas with a matrix that is not necessarily in CNF
and we present it as such. However, when connecting the algorithm to the proof
system VExp+Res, we consider only PCNF since that is what is supported by the
proof system.

To simplify the presentation we will only be looking at formulas of the form
VX3Y ¢. The case IXVY is symmetric since VX3Y ¢ is true if and only if
dXVY ¢ is false. In some scenarios, we need to call a SAT solver with non-CNF
input. While SAT solvers in practice often require CNF input, this represents
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only a minor obstacle as CNF can be achieved by the addition of fresh variables,
cf. [Tse68, [PG86].

The algorithm AReQS is presented as a search for the winning move for
the given formula anchored in the game perspective (see Section . Finding a
winning move for a prefix of the form V3 shows the formula to be false, conversely,
demonstrating the absence of such move shows the formula to be true.

Definition 6 (winning move). An assignment 7 to variables X is a winning move
for a QBF VX ® if ®[7] is false and it is a winning move for IX P if ®[7] is true.

Calculating a winning move is conceptually simple when given a formula
with a single quantifier block. Such formulas represent a 1-move game, where
only one of the players is allowed to make a single move upon which the game
terminates. Deciding such game translates naturally to propositional satisfiability.
In particular, there exists a winning move for the formula 3X ¢ if and only if ¢
is satisfiable. Analogously, there exists a winning move for the V-player for the
formula VX ¢ if and only if —¢ is satisfiable. Further, the satisfying assignments
of the respective propositional formula are winning moves of the original formula.

This observation motivates the following approach to solving QBF. Start
eliminating quantifiers until only one type of quantifier is left, at which point
invoke a SAT solver. The question is how to eliminate quantifiers. The approach
taken here is by ezxpansion into Boolean connectives. This is enabled by the
observation that the formula VXJy® has the same set of winning moves as the
formula VX (®[0/y] vV ®[1/y]).

A key insight is that a full expansion is not necessarily needed and that a
partial expansion may decide the formula. This is possible because assigning a
variable to a specific value reduces the set of winning moves, cf. [JKMCI6, Sec. 3].

Example 2.4.2. Let ¢ = (uVey) A (@ Ves) A (& Veé) and consider YuJeyezo.
The formula is true and therefore there is no winning move for the V player. One
could expand e; and es with all the 4 possible assignments to e; and e,. However,
considering only two is sufficient. Expanding by the assignments {1/e1,0/es2} and
{0/e1,1/es} yields Yu(d[l/e1,0/e2] V ¢[0/e1,1/ea]) = Vu(a V u) = Vu(l). Since
Vu(1) has no winning moves, the original formula also does not have any and
therefore it is true.

The idea of partial expansions is formalized in the following definition as an w-
abstraction.

Definition 7 (w-abstraction). Let X,Y be finite sets of variables and w be a set
of assignments to Y. The w-abstraction of a closed QBF VXIY ¢ is VX \/  , o[u].

The algorithm AReQS starts by an empty abstraction and strengthens it
gradually using the Counterezample Guided Abstraction Refinement paradigm
(CEGAR) |CGJ703]. The w-abstraction is an abstraction in the sense that its
set of winning moves is a superset of the winning moves of the original formula.
Adding more assignments to the set w restricts the set of winning moves, i.e. it
refines the abstraction.

Algorithm [I] shows the AReQS ideas in pseudocode. It consists of a loop,
which in each iteration first finds a winning move for the current w-abstraction
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Algorithm 1: CEGAR Algorithm for 2QBF

input : closed VX3Y (¢) with ¢ propositional
output : 7 if there exists a winning move 7 for VX, 1 otherwise

1w« 0

2 while true do

3 a+ Ve, oK // build abstraction
4 T 4 SAT(—a) // find a candidate
5 if 7 = 1 then return L // no winning move, formula true
6 1 < SAT(¢[7]) // find a countermove
7 if u = 1 then return 7 // no countermove, formula false
8 w4+ wU{p} // refine

and then it tests whether that move is also a winning move of the formula being
solved. If it is, we are done. If, however, the winning move for the abstraction is
not a winning move of the original formula, the abstraction is refined.

A winning move of the abstraction is referred to as a candidate. A candi-
date 7 is a winning move of the original VX3Y ¢ if and only if Y ¢[7] is false.
Equivalently, it is a winning move if ¢[7] is unsatisfiable. Consequently, if 7 is not
a winning move, there exists an assignment p satisfying ¢[7]; the assignment p is
called a countermove to the candidate move 7.

The algorithm maintains a set of countermoves w, initialized to the empty set
(line|1). In each iteration of the loop it first constructs an abstraction according
to Definition (7] (line . Note that upon initialization, the set w is empty and
therefore @« = 0 when first entering the loop. Subsequently, the algorithm tries
to find a winning move for the abstraction (line . If no candidate is found, it
means that there is no winning move for the given formula and the algorithm
terminates. If a candidate 7 is found, a SAT solver is used to find a countermove
to it (line [6). If there is no countermove, then 7 is indeed a winning move and
the algorithm terminates. If there is a countermove p, this countermove is added
to the set w (line[8).

Example 2.4.3. Consider the prefix Vujususz3deijeses and the following matrix

U1 Vuz VerVes
u;r VugVerVes
17,1\/U2\/€3

U2 VugVerVes

The following is a possible run of the algorithm. Let 7 = {0/u1,0/uz2,0/us}
be the first candidate with ¢[r] = {e; V ea,&1 V e2}. The assignment pu; =
{0/e1,1/e2,0/e3} is a countermove to 7. The w-abstraction refined by 7 is
Vujugus(ty V ug). The assignment 75 = {1/u1,0/us,0/us} is a winning move
for the abstraction and is chosen as the next candidate. We have ¢[r2] = {es},
satisfiable by pus = {0/e1,0/e2,1/es} chosen as the countermove.

Refining by uo yields the w-abstraction Yuqusus((#1 V ug) V (u1 V ug)) which
has no winning moves as its matrix is a tautology. This means that the original
formula also has no winning moves and therefore it is true.



“gbfproofs” — 2021/7/22 — 16:59 — page 21 — #21

Chapter 2. Quantified Boolean Formulas 21

Example [2.4.3] uncovers an interesting property of AReQS in CNF. The as-
signments to the universal variables effectively select or deselect clauses for the
existential quantifier to satisfy. The solvers QESTO [JMS15] and CAQE [RT15]
develop this idea for arbitrary number of levels. A uniform proof system for
the different CEGAR-based approaches was presented in [Tenl7]. The solvers
QuAbS [Tenl6] and CQESTO [Janl8a] develop the ideas even further to non-
CNF.

Since the winning moves of the w-abstraction over-approximate the winning
moves of the original formula, and the algorithm deems the formula true only
if the abstraction has no winning moves, the original formula in such case must
also be true. Termination follows from the observation that no candidates may
repeat. Indeed, if p is a countermove to 7, after the refinement the abstraction
is of the form VX (o’ V ¢[u]). Consequently, any subsequent candidate 7/ must
falsify ¢[p]. This means that 7/ cannot be 7 as 7 together with u satisfy ¢. By a
similar argument we can show that countermoves also do not repeat.

2.4.3. Connecting AReQS to VExp+Res

In order to relate AReQS to VExp+Res, we focus only on the refutation of formulas
of the form VX3Y ¢ where ¢ is in CNF. If VX 3Y ¢ is false, there must be a winning
move for the universal player. This means that AReQS finds an assignment 7 to
the first block such that there is no countermove to it. More specifically, ¢[7] is
unsatisfiable. Since ¢[7] is unsatisfiable in purely propositional sense, there also
exists a propositional resolution refutation 7 for it. The VExp+Res refutation for
the original formula VX 3Y ¢ is constructed by following the structure of 7.

Each leaf of the resolution refutation 7 is a clause C’ € ¢[r] obtained from
some clause C' € ¢. Construct a clause C'™ by invoking the Axiom rule on C' using
the assignment 7. The Axiom rule removes all universal variables from C' and
annotates each existential variable with 7. The rest of the proof is constructed
by applying the same resolution steps as in 7: whenever there is a resolution step
on z in 7, perform a resolution step on x7.

Applying the Axiom rule parameterized by the substitution 7 to the clauses
of the matrix, yields annotated clauses corresponding to the clauses in ¢[7], where
each existential variable is annotated by 7.

Example 2.4.4. Consider the clauses C7 = u; Ve, Co = us Ve, and C3 =
41 V ey under the prefix Yujusdejes. The matrix becomes unsatisfiable under
the assignment 7 = {0/uy,0/us}. Substituting 7 into the matrix gives C] = ey,
Cl =&, and Cf = T, where the empty clause is obtained by resolving C} and
C%. The corresponding VExp+Res proof applies the Axiom rule on C; and Cs
yielding C7 = e], C3 = e[, which are then resolved into L.

2.4.4. RAReQS: Expansion-based QBF Solving

This section presents the algorithm RAReQS [JKMSC12| [JKMCI6], which gen-
eralizes AReQS to an arbitrary number of quantification levels by recursion. The
algorithm tries to find a winning move for the given formula but rather than call-
ing a SAT solver, it uses recursive calls as a subroutine. The base case, with one
quantifier block left, is handled by a SAT solver.
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Algorithm 2: Basic recursive CEGAR for QBF (existential player)

1 Function solve(3X ®)
input : 3X® is a closed QBF in prenex form with no adjacent blocks with the
same quantifier
output : a winning move for 3X ® if there is one, L otherwise

2 begin

3 if ® has no quantifiers then

4 L return SAT(®)

5 w0

6 while true do

. o Apew, Pl

8 7/ < solve(prenex(IXa)) // find a candidate solution
9 if 7/ = 1 then return L // no winning move, formula false
10 T+ {c/z| 7' (z) =cand z € X} // filter a move for X
11 1 <+ solve(®[7]) // find a countermove
12 if u = 1 then return 7 // found winning move, formula true
13 w4+ wU{p} // refine

Analogously to AReQS quantifiers are expanded into a propositional operator
(disjunction of conjunction) and a partial expansion lets us approximate a set of
winning moves. An abstraction of a QBF with at least two quantifier blocks is
obtained by partially expanding the second quantifier block. Just as before, a
candidate refers to a winning move of an abstraction.

Applying expansion to arbitrary quantifiers requires additional care. Con-
sider for instance JxVy3z¢. Expanding the middle quantifier Vy into a con-
junction yields a QBF in non-prenex form: Jz(3z¢[0/y] A Jz¢[1/y]). There-
fore, the abstraction is calculated by additionally prenexing the expanded for-
mula. We write prenex(®) for the prenexed form of a QBF ®. Prenexing
may require fresh variables. For instance, prenex(3x(32¢[0/y] A Jz¢[1/y])) gives
2202 (4[0/y, 2°/2] A ¢[1/y, 21 /2])). We will see later that these fresh variables
correspond to the annotations in VExp+Res.

Definition 8 (w-abstraction). Let X, Y be finite sets of variables and w be a set
of assignments to Y.

The w-abstraction of a closed QBF VX3Y @ is the formula prenex(VX'\/ ., ®[u]).
The w-abstraction of a closed QBF 3XVY @ is the formula prenex(3X A ., ®[u]).

The algorithm is presented as a recursive function solve. Its implementation
for the existential quantifier is presented in Algorithm[2] The implementation for
the universal quantifier is analogous. The function accepts a closed QBF QX ®
where @ € {V,3}; it returns a winning move for QX if such exists and it returns
1 otherwise.

The base case of the recursion is when ® does not contain any quantifiers, in
which case a SAT solver is used to find a winning move. In the general case, an
w-abstraction is gradually strengthened by countermoves in a similar vein as in
AReQS. The prenexing step causes a small technical difficulty. A winning move
for the abstraction potentially contains values for variables that correspond to
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copies of variables originally appearing in inner quantifiers. These need to be
filtered out as they do not exist in the original formula (line .

Observe that in each iteration there are two recursive calls. The first call
obtains a winning move for the abstraction—a candidate (line |8). The second
call checks whether the candidate is a winning move or not (line. In the first
call the number of quantifier levels drops by two because the second quantifier
is eliminated by expansion and the third quantifier is merged with the first one
during prenexing. In the second call, the number of quantifier levels drops by one.

Example 2.4.5. Consider the QBF Jvw®, where
O =Vudzy((vVw V) AN@VyY)A(@Vy) AV A@vy),

The candidates {0/v,0/w} and {1/v,1/w} are countered by {0/u} and {1/u},
respectively. Refinement expands into Jvw(®[0/u] A ®[1/u]), with prenex form

Fowz'y'z"y" (v Vw V')A @VY)A (0 VY)A(E)
ANwVw V) Ao Vy ) A @Vy")AG"))

This purely propositional abstraction is unsatisfiable. Hence, there is no
winning move for 3 and the function terminates and returns 1, which means that
the formula is false.

The arguments for correctness and termination are analogous to AReQS.
Candidate moves or counterexamples cannot repeat. If in any of the iterations of
the loop a candidate 7 was countered by some p, the move 7 will never be drawn
from the abstraction because the refinement guarantees that 7 is losing in the
strengthened abstraction.

RAReQS, compared to the presentation here, implements a modification that
mitigates the growth of the abstraction for larger number of qualification levels
(starting at 4). Rather than prenexing the whole prefix, only the outermost quan-
tifier is prenexed and the rest is maintained in non-prenex form. For instance,
VX3IYVZIW ¢ may be expanded as VXZ'Z"((IW¢') vV (IW¢")). Any winning
move for VX Z'Z"” must be a winning move for each of the individual disjuncts.
Hence, candidate tests and refinements are carried out separately for each dis-
junct. From the game-theoretical point of view, each disjunct can be seen as a
separate game that the quantifier must win. Therefore, the approach is referred
to as multi-games [JKMCI6l Sec 4.1]. The existential case is again analogous.

2.4.5. Connecting RAReQS to VExp+Res

We show how to produce VExp+Res refutations (Figure from Algorithm
Consider the following naming scheme for fresh variables used in prenexing. Part
of the name of each existential variable is an annotation corresponding to a sub-
stitution to some universal variables. In the input formula these annotations are
empty. An annotation is extended whenever a fresh copy of the variable is added
to an abstraction. As the recursion proceeds, the annotations are getting longer
and at the same time the universal variables disappear from the formula.
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Consider the prefix AEVU3E VU, ... VU,,_13E, ¢. If the given formula hap-
pens to start with the universal quantifier, add a dummy 3F;. Expanding by some
assignments w1 and ps to the variables Uy gives the following transformations.

3E, EM EY2YU, .. VU, 3EM 3EM2( ¢y, EY /By, ..., EM /E,] A
¢[/"L2’ E52/E23 ceey E;?/Eﬂ] )

The original formula is expanded in and prenexed in . The notation
X" represents the set of variables obtained by appending p to the annotation of
each variable in X. Since ¢ is in CNF, the matrix of is also in CNF. At the
same time, each clause observes the invariant that if it comes from an expansion
by w;, then it has u; in its annotations.

The multi-game expansion approach (Section enables the subsequent
expansions to be more surgical; in the example above, only one of the conjuncts
can be expanded when expanding Us.

The base case of the recursion of Algorithm [2| takes place when there are no
universal variables left in the matrix. This means that in such a case the matrix
contains annotated clauses containing only existential variables, as required by the
expansion rule in the calculus. These are handed to a SAT solver. If the expansion
is false, the SAT solver deems the expansion unsatisfiable, which is then certified
by propositional resolution refutation. This refutation is readily translated to
a VExp+Res refutation as each propositional resolution step corresponds to a
VExp—+Res resolution step.

(2.2)

Example 2.4.6. Consider JeqVu;JeaVugdes((e1 VuiVeaVusVes)Aéy AeaAes) first
expanded by u; = 0 yielding ElelEleg/uIVUQEleg/ul (61\/63/u1 \/u2\/e§/u1 )/\El/\ég/u1 A

ég/ul which is further expanded by us = 0, yielding thus Je; Heg/ul Heg/ul’o/“2 (e1V

)/ v ey 02y Aey A ey A e "% Propositional refutation of the last
formula gives a VExp+Res refutation.

2.5. Preprocessing

Over the years, many preprocessing techniques have been developed for QBF's (cf.
[BLS11l IBKOT, [GMN10, [LE1S, [SDB06, VGWLI12, WRMBI17]). Preprocessing a
QBEF before it is passed to a complete solver is beneficial in many cases [LSVG16].
It is particularly helpful when the solver does not try to reconstruct information
that was lost by the transformation to prenex conjunctive normal form (cf., for
example, [JKMCI6, [(GB13|, [HPSS18|, [Ten16l [LBO8, [ESW09, [AB02] for solvers
that do not require the input formula to be in prenex conjunctive normal form).
Preprocessors like sQueezBF [GMNTI0], Blogger [BLS11], HQSpre [WRMBI17], or
QRATPre+ [LE1S8| [LE19] apply rewriting techniques that preserve (satisfiability)
equivalence and that modify formulas in such a way that information relevant
for the solver becomes easier to access and such that irrelevant information is
eliminated.
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2.5.1. Background

There are three types of preprocessing rules: (1) clause elimination rules, (2)
clause addition rules, and (3) clause modification rules. The application of these
rules might also require a modification of the prefix, because new variables could
be introduced while some variables might vanish.

Clause elimination rules [HJLT15] remove clauses while preserving unsat-
isfiability. Examples of such rules are tautology elimination, subsumption, the
existential pure literal rule, and blocked clause elimination. Tautology elimina-
tion removes clauses containing a positive and negative occurrence of a variable.
Subsumption as implemented in [Bie04] removes clauses that are supersets of
other clauses. The existential pure literal rule [CGS98] removes all clauses with
an existential literal that occurs only positively or only negatively in the formula
(there is also a universal pure literal rule, but as being a clause modification rule,
it is discussed below). Blocked clause elimination [BLSII|] removes a clause C
from a QBF IIy if C' contains an existential literal [ such that for all D € ¢ with
I € D, there exists a literal k with k <g [ with k,k € C U D\{l}, i.e., the clause
C U D\{l} is a tautology.

Example 2.5.1. Consider the QBF ¢ given by
VaizaIyry2 (21 Vy) Ay Ve ) A@1VH) A(G2Vy) Az Vyr Ve ) AT Ve V).

The last clause is a tautology, hence it can be safely removed. After the removal
of the last clause, the existential variable ys occurs only in one polarity, therefore
the existential pure literal elimination rule is applicable and clause (g2 Vy;) can be
removed. Also x5 occurs only in one polarity, but since it is universally quantified,
we are not allowed to remove clauses (y1 Vaz) and (21 Vy; Vao) with the existential
pure literal rule. Nevertheless, we can remove the latter clause, because it is
subsumed by (21 V y1). Next, we eliminate clause (x; V y1), because it is blocked
on y;. Finally, we obtain the simplified QBF Vai2o3y1 ((y1 Va2) A(Z1VH1)) which
is satisfiability equivalent to ¢.

Clause addition rules enrich a formula with new clauses besides modifying
and removing clauses. Variable elimination [Bie04] replaces the clauses in which
a certain existential variable occurs by all non-tautological resolvents on that
variable. Therefore, the [restRule as introduced in Section [2.3.1] is applied on the
existential variables of the innermost quantifier block given that a certain limit
of additional clauses is not reached.

Partial universal expansion [Bie04, [BKOT7] is a restricted form of universal
expansion as discussed in Section [2.4] It eliminates a universal variable x of the
innermost universal quantifier block by copying the matrix of the QBF. Then x
is set to true in one copy and to false in the other copy. For combing these two
CNFs, in one copy new names must be assigned to the variables of the innermost
existential quantifier block.

Example 2.5.2. Consider the QBF Vz1zo3y:1((y1 V 22) A (Z1 V ¢1)) from the
previous example. Eliminating y; results in QBF Vzi29((22V Z1)). The universal
expansion of the universal variables derives a formula containing the empty clause.
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If we expand x1 in Vi 293y ((y1 Va2) A (1 V7)), we obtain Yoy 1y ((y1 V a2) A
(71) A (y1 V x2)). Note that y; was renamed to ¢} in the case that x; was set to
false, for the case that 1 was set to true, we keep y;. Eliminating variable zo

finally results in 3y1y197y1" ((51) A (y1) A (@) A (W17))-

Clause modification rules add, remove, and rename literals. One important
rule is universal reduction, the [red}Rule, as introduced above in Section [2.3.1
Strengthening [Bie04] removes a literal [ from a clause C' if there is another
clause D V[ in the formula such that D subsumes C. The unit literal elimina-
tion rule [CGS98] is applicable if a QBF II¢ contains a clause C' with exactly
one existential literal [ and for all universal literals k¥ € C, | < k. Then all
clauses containing ! are removed and so are all occurrences of [. Universal pure
literal [CGS98] elimination removes all occurrences of a universal literal [ if it
occurs only in one polarity in the considered QBF. Covered literal addition adds
literals [, to a clause C' that occur in all non-tautological resolvents of C' with
clauses C’ on an existential pivot I, where [ € C and | € C’. Additionally, I, <p I
must hold for all covered literals I.. The equivalence replacement rule [Bie04] can
be applied in QBF Il when two literals [, k with [ is existentially quantified and
k <g1 [ are found to be equivalent by detecting the clauses (I k) and (IV k) in 1.
Then [ may be replaced by k. Finally, the blocked literal elimination rule [HSB15]
can remove a universal literal [ from a clause C' if all resolvents on [ contain two
opposite literals k and k with k& < [. Blocked literal elimination generalizes the
universal pure literal rule.

Example 2.5.3. Consider the QBF
VarzeIyiy2((y1 V ze V g2) A (21 V 2) A (T V y2) A (§1V T1V G2))-

By strengthening, the clause D = (g1 VT V2) can substituted by (g1 VZ;), which
is obtained by resolving D on gs with clause (Z1 V y2), because (Z1) subsumes D.
By equivalence replacement, we may substitute yo by x1 and under omission of
the two tautological clauses (x1 V Z1), we get VaixoIy1 ((y1 Ve V) A (1 V T1)).
Now z1 and xo are pure literals and can therefore be omitted. The application
of unit literal elimination results in a conflict.

For almost all of these preprocessing rules, Q-resolution proofs (see Sec-
tion can be generated to witness their correct application [JGM13]. However,
this approach does not work for universal expansion which is a very crucial tech-
nique in preprocessing. In order to capture all recent preprocessing techniques
including universal expansion, the QRAT proof system was developed.

2.5.2. The QRAT Proof System

The QRAT proof system [HSB17] lifts the RAT proof system (see Chapter ??) from
SAT to QBF. The RAT proof system introduces rules for adding and removing
clauses such that the truth value of a formula is preserved. Besides the QBF
variants of clause addition and clause deletion rules that have to take the variable
ordering imposed by the prefix into account, the QRAT proof system provides
additional rules for clause modification. Before we introduce the rules of QRAT,
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we first define the notions of outer resolvent and implication via unit propagation.

Definition 2.5.1. The outer resolvent of c_lauses CV1and D VI on literal [
w.r.t. prefix IT is defined as OR(II,CVI,DV I, 1) = CU{k | k€ D,k <pg I,k # 1}.

In contrast to the classical resolvent C' U D, the outer resolvent contains only
those literals of D that occur to the left of the pivot literal [ in the quantifier
prefix.

Example 2.5.4. Given prefix IT = Va13y; Voo Jyays and clauses C = (y1 VT2 Vys)
and D = (z1 V §1 V y3) the outer resolvent OR(II, C, D,y1) = (21 V Z2 V y3). The
outer resolvent OR(II, D, C, §1) = (z1 V y3).

Proof systems like resolution and Q-resolution derive clauses that—when
added to the formula under consideration—preserve logical equivalence. The
QRAT proof system is an interference-based proof system, i.e., the addition of
newly derived clauses or the elimination of a redundant clause only preserves
satisfiability equivalence meaning that the set of models/counter-models might
change. As in RAT, the concept of reverse unit propagation is used to justify
clause addition or deletion.

Definition 2.5.2. A propositional formula ¢ implies a clause C = (I1 V...V 1,)
via unit propagation (denoted by ¢ 1 C) iff unit propagation derives the empty
clause L on 9 Aly A ... Al, where unit propagation refers to the application of
the unit literal elimination rule until fixpoint.

A clause that is implied by unit propagation is sometimes also called an
asymmetric tautology [HJLT15] or a clause that has the redundancy property of
reverse unit propagation (RUP) [VG12D].

Example 2.5.5. Consider the propositional formula (zVy)Ay. The clause (zVy)
is an asymmetric tautology, because for (y A Z A §) unit propagation derives a
conflict.

Based on outer resolvents, we introduce the quantified resolution asymmetric
tautology property (QRAT) next.

Definition 2.5.3. A clause C' has QRAT on a literal | € C' w.r.t. QBF Tl iff
¥ 1 OR(IL, C, D) for all D € ¢ with [ € D.

If a clause C has QRAT on literal [ w.r.t. I, we call [ a QRAT-literal of C' for
ITyp. The following properties of QRAT-literals proven in [HSB17] finally allow us
to formulate the rules of the QRAT proof system (see Figure . If a clause C'is
an asymmetric tautology in QBF Il or if C contains an existential QRAT-literal
w.r.t. IIt) then C is redundant in Iy, i.e., IItp and II(¢p U {C'}) are satisfiability
equivalent. If a clause C' contains a universal QRAT-literal for QBF IIt), then [ is
redundant in C, i.e., II(xp U{C}) and II(xp U{C\{l}}) are satisfiability equivalent.
Note that the clause and literal addition rules can introduce new variables that
have to be included in the prefix. The position in the prefix depends on the usage
of the new variable in later steps of the QRAT proof.
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Rule Rule Application Side Conditions
Clause e | is existentialor l = 1*, 1€ C
L QRATE(C, 1)
Elimina- Iy u{C}) —————= 1y e [ is a QRAT-literal of C for Il

tion
e [is existentialor l= 1% 1€ C

e [ is a QRAT-literal of C for II'(¢))

' u{ch e II’ is obtained from II by adding
the variables only occurring in C'

Clause QRATA(C, 1)
Addition 1L

*if | = L then C is an asymmetric tautology
Literal e [is universal, l € C, C' = C\{l}
L QRATE(C, 1) ,
Elimina-  II(pU{C}) —— = II($U{C'}) o [is a QRAT-literal of C for [T/
tion
e [is universal, C' = CU{l}, 1 g C
. l is a QRAT-literal of C for IT'%)
Literal QRATA(C, 1), , °
Addition H(ypu{c}) I'(pu{c) e II’ is obtained from II by adding

the variable of [ if it is new

e [is universal, [ € C, C' = C\{l}

Extended EUR(C e for all k € C with & > [,

Universal Iy u{C}) #}H(wu{ol}) [ and k are independent w.r.t.

Reduction the resolution-path dependency
scheme

Figure 2.11. Rules of the QRAT Proof System

Besides the clause addition, clause elimination, literal addition, and literal
elimination rules based on the QRAT property, there is a generalized version of
universal reduction included that is based on resolution-path dependency schemes

(see also Section [2.3.2]).

Given a QBF ¢, a derivation in the QRAT proof system is a sequence
My, ..., M, where M; is one of the rules shown in Figure applied on QBF
¢i—1 to obtain QBF ¢;. Hence, starting from a given QBF ¢ = ¢y, a QRAT
derivation My, ..., M, produces new, equi-satisfiable formulas ¢1,...,¢,. If ¢,
contains the empty clause, then the derivation is a proof of unsatisfiability. If the
matrix of ¢, is empty, then the derivation is a proof of satisfiability.

Example 2.5.6. Consider the following true QBF Ily such that II = Vaz3yiys
and ¥ = ((x Vy1) A(ZVy2) A1V §2)). It has the following QRAT proof of
satisfiability:
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Iy QRATA(GZ1 V&), 1), Oy u{(m va)l}) (g1 Vv ) is blocked on 1

QRATE((y2VZ), 1 _ _ _ _ _ _ _

SETELYED, (V) A V) A1 V) OR(L (32 V), (71 V 52), v2)

has RUP

QRATE((52VH1), §2), II((z Vy1) A (J1 V T)) (g2 V 1) is blocked on s

w II((xz V y1)) (g1 Vv Z) is blocked on g1

w) II(T) (y1 V z) is blocked on y1

Note that for a blocked clause with blocking literal [, [ is also a QRAT-literal.

Example 2.5.7. Consider the following false QBF Iy with II = Vax3dy 42 and
Y= ((xVy)A(xVyz) A @1V y2)). It has the following QRAT proof:

QRATA((71), 7 _ 7 7]
o M} (U {(71)}) OR(IL, g1, (z V w1),91)
has RUP
SRATEEVY D)) 11((y1) A (2 y2) V (51) A (31 V §2) (3 V 91) is blocked on =
ORATECL L) (L) has RUP

2.5.3. QRAT and Its Extension QRAT™T for Preprocessing

Heule et al. [HSB17] showed how to express preprocessing techniques in terms of
QRAT rules, implemented QRAT proof generation in the preprocessor Blogger and
provided a proof checking tool. In many cases, the proof generation is straightfor-
ward. For example, a clause C' that contains a pure literal [ obviously has QRAT
on [. Hence, if [ is existential, QRAT witnesses that C' may be safely removed. If
[ is universal then QRAT witnesses that [ may be safely removed from C. The
argument generalizes to blocked clauses and blocked literals. Also tautologies and
subsumed clauses have the QRAT property. For other rules the translation is more
involved, because multiple different QRAT rule applications are necessary. In the
following, we show an example of a QRAT proof for the restricted form universal
expansion as used in preprocessing, i.e., the expanded universal variable occurs
in the innermost universal quantifier block. For the details we refer to [HSB17].

Example 2.5.8. In Example we have seen that for QBF Il with II =
Vaixo3y; and ¢ = ((y1 V 22) A (1 V §1)) universally expanding z; results in the
formula VzoIy1yi ((y1 V @2) A (71) A (y] V 22)). In the following, we certify this
rewriting of Ty with the following QRAT proof.

QRATA((y1Vz2VZy), L)

Iy

I((y1 V@) A (Z1VF1) A (y1 Va2V E1)) 1)
'((y1Va2) A@1VH) Ayt Vae VZL) A (G Ve V) (2)

H’((yl V.I2)/\(J_C1 \/gl)/\(yl \/a:z\/a_q)/\(gll VziVyi) A (3)
(¥1 Va1 V)

T ((y1 VZ‘Q)/\(.fl V?jl)/\(yl \/xz\/a_q)/\(gll VziVyi) A (4)
(Wi Ve Vg AW, Ve Ver))

Wz VHL) A1 Ve VE)A G Ve Vy) Ay Vel Vo (5)
71) A (Y V32 VT1))

IV ((Zy VY1) A(y1 Ve VEL) A (Y Va1 VT A (Y Ve Var))  (6)
(@1 V) Ay Ve VE) Ay Ve V) (7)
R V2 Fy1y] ((51) A (1 V 22) A (4] V 22)) ®)

QRATA((7] Va1 Vy1), 91)

QRATA((¥} Va1 V1), 1)

QRATA((y) Vaa V1), y7)

QRATE((y1Ve2), 1)
—)

QRATE((9] Va1Vy1), y1)

QRATE((y} Va1 Vy1), 71)
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In Step (1), the subsumed clause (y; V2V Z1) is introduced. This is possible,
because it has RUP. In Step (2) the clause (7] V 21 V y1) with the fresh variable
y} variable is introduced. Obviously, 71 is a QRAT literal for prefix II' = TI3y].
The clause introduced in Step (3) is needed for renaming occurrences of y; to ¥}
as done in Step (4). In fact, the clauses introduced in Step (2) and Step (3) form
a conditional equivalence between y; and yf. In Step (6) and Step (7) the clauses
of the conditional equivalence are removed again, because no further renaming is
necessary. The removal is possible, because y; and y; are QRAT literals. Finally,
all occurrences of x1 are removed by the multiple applications of EUR (indicated
by EUR*) and we obtain indeed the formula Vao3y1y) ((y1 V 22) A (g1) A (y] V x2)).

Originally, QRAT was developed to provide a uniform way to certify the result
of a preprocessor. As the QRAT proof system provides sound rules to add, remove
and modify clauses, the QRAT rules themselves can be used within a preprocessor
to modify a formula. For this purpose, even a generalization of QRAT called
QRAT™ was developed [LEIS]. The version of QRAT as introduced above uses
propositional unit propagation for testing the QRAT property (see Def .
Here the quantification of the variables is not taken into account. QRAT™ uses a
QBF-specific variant of unit propagation which also includes universal reduction
(i.e, QBCP by Definition . So certain clauses can be shortened during unit
propagation, resulting in a more powerful redundancy property.

For the purpose of constructing refutations, it was shown that the QRAT and
QRAT™ proof systems are equivalent, i.e., the systems mutually p-simulate each
other [CCI19]. For preprocessing, however, QRATT has a practical advantage over
QRAT [LE19]. Due to the more powerful redundancy property in QRAT™, for
example, it can remove particular redundant clauses C' in a single application of
a rule. The same clause C' can also be removed by QRAT, but only by applying
a sequence of rules. Hence, in practice the search for redundant clauses in pre-
processing based on QRAT T is simpler because it is not necessary to search for a
sequence of rules that justify the redundancy of a clause.

2.6. Extraction of Winning Strategies from Proofs

Only few solvers explicitly generate winning strategies while evaluating a formula.
For example the incremental determinization approach [RTRS18] generalizes the
ideas behind CDCL (see Chapter ??) from searching for satisfying assignments to
searching for Skolem functions. The solver QFun |Janl8b] uses strategies instead
of assignments for generating expanded formulas (see also Section . Most
solvers, however, generate winning strategies only implicitly. For the solving
approaches discussed before, proofs serve not only as witnesses for satisfiabil-
ity /unsatisfiability, but they provide the necessary information for extracting a
winning strategy, i.e., a model for a true QBF or a countermodel for a false QBF.
We distinguish between static function-extraction approaches (offline approaches)
and dynamic round-based approaches (online approaches). Both are shortly dis-
cussed in the following.
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(zVaVvy) Y (zvavy)

Figure 2.12. Q-Resolution refutation of QBF JaVady((z VaVy) A (ZVaVy)Ajg)

2.6.1. Function-Extraction Approaches

Balabanov and Jiang [BJ11l [BJ12] presented an approach that allows for the
extraction of Herbrand functions from clause Q-resolution proofs, and dually for
the extraction of Skolem functions from cube Q-resolution proofs. Given a proof,
the computation of such a function is linear in the size of the proof, allowing to
use the simple representation format of decision lists.

Definition 2.6.1. A decision list D = (t1,v1),. .., (tn,vn), (T,0) is a finite se-
quence of pairs where t; is a conjunction of literals and v; € {0,1}. Let o be an
assignment over the variables occurring in a decision list D. Then D evaluates to
v; under o if 7 is the least index such that t; is true under o.

Now let ¢ be a false QBF refuted by a Q-resolution proof 7 as described
above. As ¢ is false, there is a winning strategy for the universal player. By
traversing the proof in topological order, for each universal variable u, a decision
list D,, is constructed that encodes such a winning strategy. Let C; be a clause
occurring in 7 that has been derived by removing the universal literal [ from the
previously derived clause C} by the application of the universal reduction rule.
If | = u, then the pair (C;,0) is appended to D,. If [ = @, then the pair (C;, 1)
is appended to D,,. After the full proof has been traversed, all decision lists are
closed with a pair (T,0).

Example 2.6.1. Consider the false QBF JzVady((zVaVy)A(ZVaVy) Ag). A
possible resolution proof is shown in Figure First, clause (x V a) is derived
by resolving the first and the third clause of the formula. Applying universal
reduction results in the clause z. Further, (Z A@) is then derived by resolving the
second and the third clause. Applying universal reduction results in the clause .
Another application of the resolution rule on x and Z derives the empty clause.

The proof contains two applications of the universal reduction rule from which
the decision list (z,0), (z,1), (T,0) can be extracted. This decision list represents
the Herbrand function f,(x) = z which is indeed a counter-model of the given
formula.

This form of function extraction is also possible for long-distance Q-resolution
proofs [BIJTWT5]. Also from QRAT proofs of satisfiability Skolem functions can be
extracted by traversing the proof for constructing conditional expressions [HSB14!
HSBI17]. In contrast to decision lists, the conditions are not only conjunctions of
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literals, but more complicated formulas involving all outer resolvents of the QRAT
literal of each clause that is deleted. This approach allows also the extraction of
incomplete Skolem functions in case the preprocessor cannot solve a given formula.
If a complete solver can solve the preprocessed formula, the Skolem functions of
the preprocessed formula can be combined with the incomplete Skolem functions
for obtaining the Skolem functions of the original formula [FHSB17]. For QRAT
proofs of unsatisfiability, it is only known for a restricted version of the proof
system how to extract Herbrand functions [CC19).

2.6.2. Round-Based Approaches

An alternative approach directly implements the game semantics of QBFs. The
quantifier prefix is processed from left to right. First, an arbitrary assignment is
chosen by the existential player for the outermost existential variables. Based on
this assignment, the proof is rewritten to a smaller refutation proof which also
provides the information how the universal player has to assign the variables of
the next universal quantifier block in order to win the game. Then it is again the
existential player’s turn to assign the variables of the next existential quantifier
block. This assignment is again used to rewrite the proof, yielding the values
of the next universal variables and so on. This approach works very similar for
Q-resolution proofs and VExp+Res proofs. The main difference is in finding the
values for the universal variables.

Q-Resolution. Given an assignment of the outermost existential variables, Goul-
tiaeva et al. [GVGBII] presented a set of rules that reduces a Q-resolution proof
under this assignment such that the result is again a Q-resolution proof. The val-
ues that the outermost universal variables have in a winning strategy follow from
the clause C' in the reduced proof consisting only of universal literals—f{rom such
a clause the empty clause is derived by universal reduction. The polarity of the
literal occurrences in C' determines the value in the winning strategy. If a variable
does not occur in C, or the conflict is derived by the application of the resolution
rule, the value may be chosen freely. The approach works also for long-distance Q-
resolution proofs [ELW13] and for proofs [PSS16l [PSS19¢| that involve universal
reduction steps based on the reflexive resolution path dependency scheme.

Example 2.6.2. Consider the QBF JaVaIy((xVaVy)A(ZVaVy)Ag). If x is set to
true, the approach presented in [GVGB11] simplifies the Q-resolution proof of the
original formula to a Q-resolution proof for the formula Va3y((aVy) Ag) that first
resolves the two clauses and obtains the clause a from which the empty clause
is derived with universal reduction. Clause a contains only universal literals,
therefore, it is used to determine the value of a. Setting a to true results in the
empty clause. This is the only choice for a winning move for the universal player
under the assignment that sets  to true. If x had been set to false, the approach
would force a to be set to false as well. The rewritings of the proofs are shown in

Figure 2.13

VExp+Res. After the outermost existential variables have been assigned a truth
value, the proof reduced under this assignment contains only annotations of the
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Figure 2.13. Setting the wvalue of « in Q-resolution refutation of QBF
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Figure  2.14. Setting the value of =z in VExp+Res refutation of QBF
JzVaIy((x VaVy) A(ZVaVvy) Ag)

variables occurring in the outermost universal quantifier block in one polarity,
i.e., those annotations are unopposed [BCJI4]. The polarities indicate how the
respective universal variables have to be set in a winning strategy. Then the
annotations of the outermost universal variables are removed, and the variables
in the next existential block are assigned a value.

Example 2.6.3. Consider the QBF JzVaTJy((xVaVy)A(ZVaVy)Ag). Instanti-
ation results in the propositional formula (zVy°%/¢) A (ZVyY/*) Ag®/* Agt/®) that
is refuted in three steps, e.g., by resolving the first and the second clause resulting
in the clause (y%/ V y'/%). Two further applications of the resolution rule result
in the derivation of the empty clause. If x is set to true, the instantiated formula
simplifies to (y'/¢) A 7%/¢ A/, The resolution proof simplifies respectively, and
contains only unopposed annotations with a. Hence, a has to be set to true. The
approach works similar for the case that z is set to false. The rewritings of the
proofs are shown in Figure
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(Axiom)
{Z[T] |1 € C,lis an existential literal }

C is a non-tautological clause from the original matrix. 7 is a partial 0/1 assignment to
universal variables, which has all universal variables from C as its domain and falsifies all
universal literals in C, i.e., 7 = {0/ | u is universal in C'}, where the notation 0/u for literals
w is shorthand for 0/z if u =z and 1/z if u = Z.

{z"}UC1 {z7} U Cy

C L
AN (Resolution) ———— (Instantiation)

inst(7, C)

C1, C2, and C are clauses of annotated variables.
T is a partial 0/1 assignment to universal variables with rng(7) C {0,1}.

Figure 2.15. The rules of IR-calc [BCJ14].

2.7. Connections Between Proof Systems

In this section we turn towards a proof-complexity analysis of the QBF proof
systems defined earlier. Proof complexity offers two main threads towards this
goal: a relative comparison of proof calculi via simulations and absolute (mostly
exponential) lower bounds for the proof size of specific families of formulas in
the systems. We survey and sketch some results for both these threads. Both
approaches provide relevant information for solving as proof size implies lower
bounds on solving time in the corresponding solvers.

2.7.1. Enhanced Expansion Calculi

Before we start the comparison between the different calculi, we introduce two
more proof systems that combine the CDCL and expansion calculi from Sec-
tions[2.3]and[2:4] Both these systems use the idea of expanding universal variables
as in VExp+Res and keep track of the expansions in annotations, but incorporate
additional features of CDCL-systems as in Section [2.3

In VExp+Res each axiom clause is immediately annotated with a fized, com-
plete assignment to the universal variables. The proof then proceeds exactly as a
propositional resolution proof, with clauses in fully annotated variables. In short,
VExp+Res is propositional resolution on the conjuncts of a PCNF’s complete ex-
pansion.

IR-calc, defined in [BCIJ14], improves on this approach by working instead
with partial assignments. In addition to resolution, the calculus is equipped
with an instantiation rule by which partial annotations are grown throughout the
course of the proof. To facilitate instantiation, the o operator describes how two
partial assignments 7 and o are combined: Too:=TU{l €0 |l ¢ T}

The rules of IR-calc are given in Figure We provide a description of
each of the IR-calc rules and illustrate them with some simple examples.

Axiom clauses are introduced into the proof, or downloaded, by selecting a
clause C' from the matrix and applying the download assignment to the existen-
tial literals. By design, the download assignment o for C' is the smallest partial
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Axiom and instantiation rules as in IR-calc in Figure m

{z™¢} Uy {Z7Y7} U Cy
inst(o, C1) Uinst(&, C2)

(Resolution)

C1 and C are clauses of annotated variables. T is a partial assignment to universal variables
(i.e., rng(7) = {0,1}) and &, o are extended partial assignments that assign universal variables
to {0, 1, *}. dom(7), dom(&), and dom(o) are mutually disjoint.

cu{ryu i}

CU (Merging)

C'is a clause of annotated variables. [ is a literal and p and o are extended assignments with
dom(y) = dom(a). € = {c/u | ¢/u € j,c/u € o} Uix/u| c/u € p,dfu € o,c # d}

Figure 2.16. The rules of IRM-calc [BCJ14]

assignment that falsifies every universal literal in C'. Represented as a set of
literals, then, ¢ = {l | [ is universal in C'}. When applying the download as-
signment, existentials are annotated only with universals to their left (i.e., those
on which they depend). Consider the PCNF with prefix Vu3zVv3dy and matrix
clauses {u,Z,7,y} and {@,z,§}. Downloading the two matrix clauses gives rise
to axioms {z%,y*"} and {z%, y"}.

Instantiation applies a single partial assignment 7 to all the annotations in
a clause. As in the axiom rule, universals to the right of a variable are omitted
from its annotation. Formally, for a partial assignment 7 and an annotated clause
C, the function inst(7,C) returns the annotated clause {l["”] |19 €C}. For
example, given the prefix VujusIxVusuydy and a clause {x*!, y™4}, instantiation
by T = tqusuy derives {xz¥1%2 yU2us¥i}  Note that uz and wuy, which are right
of x, do not appear in that variable’s annotation after the instantiation. Also
note that uy does not appear in the annotation to y, which is already annotated
with the negated literal @y before the instantiation takes place (see the earlier
definition of o).

Resolution in IR-calc is identical to propositional resolution. We emphasize
that annotations are labelling distinct variables (e.g., % and zv are different
variables), so that a resolution step is only valid if the annotations of the pivot
literals match.

The calculus IRM-calc additionally incorporates long-distance steps in the
spirit of LD-Q-Res. The rules of the calculus are depicted in Figure

2.7.2. The Simulation Order of QBF Resolution Calculi

We now provide an overview of the simulation order of the resolution systems
defined earlier. A pictorial representation of the simulation order is given in
Figure

In Figure solid lines denote simulations (cf. Section where the sim-
ulating system is placed at the higher position, e.g. VExp+Res simulates tree-like
Q-Res by the simulation labeled with 1. Furthermore, all simulations are strict,
e.g. tree-like Q-Res does not simulate VExp—+Res as witnessed by a formula family
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strictly stronger
(p-simulates, but
exp. separated)

incomparable
(mutual exp.
separations)

expansion calculi

calculi for CDCL
solving

Figure 2.17. The simulation order of QBF resolution systems

with short proofs in VExp+Res, but requiring exponential-size proofs in tree-like
Q-Res. Dashed lines indicate incomparability results, e.g. VExp+Res and Q-Res are
incomparable as per line 11. This means that there are formulas with polynomial-
size proofs in VExp+Res, but requiring exponential-size proofs in Q-Res, and vice
versa.

We highlight that our information with respect to the simulation order of
the eight depicted systems is complete, i.e., we either have a simulation result
or an incomparability result. Missing lines follow by transitivity. We also point
out that all the separations (either by strict simulations or incomparability) are
exponential separations. References to the original results as well as pointers to
the separating formulas are placed in Table [2.1] accompanying Figure 2:17]

Most of the simulation results follow straightforwardly from the definitions.
This applies to the two simulations 3 and 7 between the expansion calculi on
the left as well as to all simulations between the CDCL-type calculi on the right.
Nontrivial simulations arise between conceptually different proof systems, which
applies to simulations 1, 4 and 8, details of which can be found in [BCJ14].

2.7.3. Lower Bounds and Separations

We now turn to the separations of the proof systems in Figure This involves
constructing specific formula families that provide the separations, e.g. for the
separation of LD-Q-Res from Q-Res we need formulas ¢,, that have polynomial-
size proofs in LD-Q-Res, but all Q-Res proofs for ¢,, are of exponential size. For
this separation we have multiple canonical choices for ¢, as either the equal-
ity formulas EQ,, from [BBH19], the formulas KBKF,, of Kleine Biining et al.
[KBKF95], or the parity formulas [BCJI5].

In most instances, giving the upper bounds, i.e., constructing short proofs in
the stronger system, turns out to be fairly easy, whereas establishing the lower
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Table 2.1. Formulas and references establishing simulations and separations. Numbers in the
first column refer to the labels in Figurem

| | Simulation Separation |
1| [IM15, IBCMS18al  [JM15], QParity,, [BCCM19, [BCJ15]
2 | by def. propositional formulas [BEGJ00]
3| BT [N, [BCITS)
4 | [BCI14) QParity,, [BCIIH)
5 | by def. KBKF, [ELW13|, EQ,, [BBMI9, [BBHI9],
QParity,, [BCI15] [Chel7h)
6 | by def. KBKF,,
7 | by def. KBKF, [BCI15, BBIS), £Q, [BEMII, BEI]
8 | [BCI14) version of QParity,, [BCII5]
9 | by def. version of KBKF,, |BWJ14
10| by def. version of KBKF,, [BWI14], EQ,, [BBHI9]
| | Incomparable |
11| [JM15], QParity,, [BCJ15]
12| versions of KBKF',, |[BW.J14]
13| version of QParity,, [BCJ15|, KBKF, [BCII5 [ELWT3]
14| QParity,, [BCIIH], version of KBKF, [BCII9]
15| version of QParity, [BCJ15], KBKF, [BCJ15|

bounds, i.e., showing the absence of short proofs in the weaker system, presents
the main technical challenge. This is in line with the general picture in compu-
tational complexity, where the task of showing lower bounds turns out to be the
most intricate.

Arguably, what is even more important than the actual lower bounds, is to
devise generally applicable lower-bound techniques. For propositional resolution
we have a number of such techniques (cf. Bus12]) and it is illuminating
to review their applicability in the QBF context.

The (in)effectiveness of propositional techniques in QBF. The most
widely used classical technique is the seminal size-width technique of [BSWOT],
which shows lower bounds for size via lower bounds for the width in resolution.
However, this technique drastically fails even in the base system Q-Res [BCMS18a]
and also does not seem applicable more widely [CBIS].

Feasible interpolation is another widely-used propositional technique that
connects circuit complexity to proof complexity. Feasible interpolation applies
to a number of classical proof systems [Kra97, [Pud97], and in [BCMSI7] it was
demonstrated that this technique lifts to all QBF resolution systems depicted in
Figure [2.17} However, the applicability of feasible interpolation is restricted by
the fact that it imports lower bounds for monotone Boolean circuits (of which we
only have relatively few [Juk12]).

A further general approach is through Prover-Delayer games. While this
is effective in both propositional resolution as well as in QBF
resolution [BCST9] (and can even yield optimal bounds [BGL13| [BGL10, BCS19]),
it only applies to the weak tree-like versions of these systems, where proofs are
always in form of a tree, i.e., if derived formulas are needed multiple times in the
proof they need to be rederived.

There is another short-coming of using propositional ideas in QBF. On exis-
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tentially quantified formulas, all the QBF resolution systems coincide with classi-
cal proposition resolution. As such, all formulas hard for propositional resolution
will be hard for any of the QBF resolution systems shown in Figure [2.17] e.g. the
existentially quantified pigeonhole formulas are hard for all the QBF resolution
calculi. Neither is this the phenomenon one wants to study in QBF proof com-
plexity (cf. [Chel7al [BHP17] for discussions), nor can such formulas provide any
of the separations in Figure (except for Q-Res from tree-like Q-Res). The
same applies to the lifted interpolation technique: while it applies to new classes
of QBF's (not just existentially quantified formulas) it also does not provide any
separations, as lower bounds via this technique will hold for all QBF resolution
calculi simultaneously.

Summarising the current impact of propositional techniques in QBF it is fair
to say that, at present, ideas from the propositional world have limited impact to
the QBF framework, and genuinely new ideas are needed to cope with the more
complex setting of quantifiers.

2.7.4. Genuine QBF Lower Bound Techniques

We will now turn to ideas for lower bounds specific to QBF and along the way
explain some of the separations in Figure 2.17]

The principal approach to lower bounds in QBF is via strategy extraction,
which originates from the game semantics of QBF. We recall the two-player game
between an existential and a universal player, who in turn choose 0/1 values for
the variables in the QBF in the order of the quantifier prefix, starting from the
leftmost quantifier. The universal player wins as soon as one of the clauses in the
QBF matrix gets falsified, otherwise the existential player wins. A fully quantified
QBF is false if and only if the universal player has a winning strategy; likewise it
is true if and only if the existential player has a winning strategy.

Strategy extraction computes a strategy from a proof of the formula. In
particular, from a refutation of a false QBF in a QBF resolution system, a winning
strategy for the universal player can be efficiently extracted [BCJ14, BJJWI5].
This is practically important, as strategies witness the answers of QBF solvers
[BJ12], but it can also be exploited for lower-bound techniques [BCI15, BBCI6,
BBHI9.

The basic idea of this method is both conceptually simple and elegant: If we
know that a family ¢, of false QBF's requires ‘complex’ winning strategies, then
proofs of ¢, must be large in all proof systems with ‘feasible’ strategy extraction.

Lower bounds from circuit complexity. The qualification ‘complex’ can be
given different specific definitions. The first is to consider the computational com-
plexity required to compute the witnessing functions. For Q-Res and QU-Res we
know that winning strategies can be computed by decision lists (cf. Section .
It is easy to verify that decision lists can be turned into ACP circuits (cf. [BCI1H]).
Hence, winning strategies can be computed from Q-Res refutations in AC°.

To turn this into a lower bound, we need to construct false QBFs where all
winning strategies are hard for bounded-depth circuits. As an example, consider
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the parity formulas QParity,, from [BCJ15]
n —
Jxq, ..., 2, V2 Ito, ... t, xOr(T1, T2, 12) U U 3xor(ti_1,xi,ti) U{zVin,Z2Vi,}
1=
where xor(01, 02, 0) defines o to be 01 @ 02 through the following set of clauses
{51\/52\/6, 01 Vo2Vo0,01Vo2Vo, 01 \/52\/0}.

Informally, QParity, reasons about x1 @ --- @ x,, where the variables ¢; encode
the prefix sums =1 & --- & z;. Hence, t,, encodes x1 ® -+ ® x,. Through the
only universal variable z the formula expresses the obvious contradiction that
1 ® -+ @® x, is neither 0 nor 1. Crucially, the only strategy of the universal
player to win on this false QBF is to play z =21 ® -+ ® x,.

A seminal result of [FSS84] [Has87] states that every non-uniform family of
bounded-depth circuits computing the parity function is of exponential size. Com-
bined with the fact that strategy extraction for Q-Res and also QU-Res is possible
in AC?, this results in an exponential lower bound for QParity, in Q-Res and
QU-Res, first shown in [BCJ15].

In contrast, it turns out that the QParity,, formulas admit short proofs both
in VExp+Res [BCJ15] and in LD-Q-Res [Chel7h]. We sketch the construction
of the linear-size refutations of @QParity, in VExp+Res. We first instantiate all
clauses in both polarities of z, generating the clauses

n
xor(zy, Ta, tg/z) U U xor(tfﬁzl, Zi, tf/z) U {te/#}
i=3

for ¢ =0,1.

Inductively, for i = 2,...,n we now derive clauses representing t?/ 7 o tl/E

2
This yields a contradiction using the clauses t(,)/ # and ﬂl),/ z,

Therefore the @QParity formulas give one part of the separation between
VExp+Res and Q-Res: formulas easy for VExp+Res, but hard for Q-Res. Formulas
easy in Q-Res, but hard in VExp+Res are contained in [JMI5]. These formulas
use n universal variables, which all need to be expanded in both polarities 0/1 in
order to obtain an unsatisfiable set of clauses. Hence, the expansion phase in all
VExp+Res refutations of the formula is of size 2". It is not difficult to construct
such formulas that are also easy for Q-Res.

Lower bounds through cost. We now explore a second way of how to inter-
pret the qualification of ‘complex’ in winning strategies. Following the semantic
approach of [BBHI9], we consider false QBFs where all winning strategies require
many moves of the universal player. We will see that such formulas are hard for
QU-Res and further QBF systems.

We measure the size of winning strategies (for a single block) by the cost of
a formula.

Definition 2.7.1 ([BBHI19]). The cost of a false QBF is the minimum, over all
winning strategies, of the largest number of responses for a single universal block.
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Strategies that require many responses of the universal player (in one block)
are costly. This measure provides an absolute lower bound on the number of
clauses in QU-Res refutations.

Theorem 2.7.1 ([BBH19]). Let m be a QU-Res refutation of a QBF ®. Then
|| > cost(®P).

We consider the equality formulas from [BBHI9] as an example. The QBF
EQ),, is defined as

dzq - x,Vuy - w3ty - -ty </\(mi\/ui\/t_i)/\(mi\/ui\/fi)> A\ (\/ti> .

i=1 i=1

The only winning strategy for these formulas is to play u; = x; for i = 1,...,n.
There is only one universal block. Hence, the cost of EQ,, is 2" and all QU-Res
(and Q-Res) proofs of EQ,, are of exponential size.

In contrast, EQ,, are easily verified to have linear-size proofs in LD-Q-Res
[BBM19], hence the formulas provide the separation between Q-Res and and LD-
Q-Res (line 5 in Figure .

Another such separation is provided by the KBKF,, formulas of Kleine Biining
et al. [KBKF95], which appear widely in the QBF literature (for examples, see
[Egli6l BCII5, BWIT4, [LES16]). Again these formulas can be shown to be
hard for Q-Res via a cost argument [BBH19], while they are easy for QU-Res
[VG12a] and LD-Q-Res [ELW13], thus in particular providing the separation be-
tween QU-Res and Q-Res. Modified versions of the KBKF',, formulas also provide
the separations of LQUT-Res from LD-Q-Res and QU-Res [BW.J14].

A related notion of cost is also effective as a lower bound measure for expan-
sion calculi, whereby the KBKF',, formulas can be shown to be hard for IR-calc
[BB18].

2.7.5. Relations to Further Calculi

We briefly mention some facts on the proof complexity of further approaches de-
fined in earlier subsections: dependency schemes, symmetries, and QRAT. How-
ever, in comparison to the systems in Figure [2.17) for which we know their precise
relations, we only have partial results on their relative complexity.

For dependency schemes (cf. Section , the EQ,, and KBKF,, formulas
give theoretical justification for their use: both formulas are hard for Q-Res, but
become easy when using the resolution path dependency scheme [BB17]. In fact,
even the standard dependency scheme cannot identify any useful dependencies
for the EQ,, and KBKF, formulas, i.e., the formulas exponentially separate Q-
Res with the resolution path dependency scheme from Q-Res with the standard
dependency scheme.

In addition, the formulas KBKF, and @QParity, have short proofs if Q-Res
is extended by the symmetry rule (see Section . It is, however, easy to
destroy the symmetries by introducing universal pure literals into those formulas
such that no symmetries can be exploited. Hence, LQU'-Res and Q-Res with the
symmetry rule are incomparable.
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For the QRAT proof system (see Section it is known that it is strictly
stronger than LD-Q-Res and QU-Res [KHST7]. Recently, it has been shown that
QRAT polynomially simulates VExp+Res. Nothing is known about the relation-
ships to LQUT-Res or to stronger expansion calculi.

2.7.6. Stronger QBF Proof Systems

We now turn briefly to the wider landscape of stronger QBF calculi beyond reso-
lution. We have seen previously that propositional resolution can be turned into
the QBF system QU-Res by simply adding the universal reduction rule. This pro-
cedure can be generalised [BBCI16]: every line-based propositional proof system
P (fulfilling some natural conditions [BBH19]) can be lifted to a system P+Vred,
which is sound and complete for QBF's.

In this way, we obtain natural QBF versions of the geometric system cut-
ting planes [BCMSI18b], working with linear inequalities instead of clauses, of
the algebraic system polynomial calculus, working with polynomials, and of the
logical Frege systems, working with arbitrary finite sets of axioms and a set of
propositional rules [BBCI6].

We note that the two lower bound techniques via strategy extraction from
Section remain applicable to these much stronger QBF systems. However,
when using circuit complexity as in the first approach, we need to import stronger
(conditional) circuit lower bounds, i.e., for NC! in case of Frege and for P/poly in
case of extended Frege [BBCI6].

For the QBF Frege systems, we can even characterise their reasons for hard-
ness: lower bounds either arise through a lower bound for propositional Frege or
through a circuit lower bound (the precise condition is NC* ¢ PSPACE in case of
Frege) [BP16]. Hence, QBF Frege systems naturally unite the hardest problem
in propositional proof complexity (lower bounds for Frege) with the hardest task
in circuit complexity (unconditional circuit lower bounds).

The second approach via cost is also effective for strong systems. However,
here we need to include another measure: the capacity of proof lines. Informally,
the capacity of a line in a proof counts how many responses can be at most
extracted from it; and the capacity of a proof is defined as the maximum of the
capacities of its lines. As an example, clauses have capacity one as the universal
player has a unique strategy to falsify the clause. Hence, resolution proofs always
have capacity one.

We recall that cost measures how many responses need to extracted from
the proof and that strategy extraction is efficient by the round-based algorithm
in Section This leads to the size-cost-capacity theorem [BBHI19], a general
result for QBF proof systems of the form P+Vred, stating that for each QBF &
and each P+Vred proof 7 of &

cost(®)
capacity(m)

| >

By this theorem, the equality formulas are hard not only for QU-Res, but also
in QBF cutting planes and polynomial calculus [BBH19]. Via this approach, we
can also show the hardness of a large class of random QBFs in these calculi.
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In contrast, QBF Frege admits short proofs for equality and these random
formulas, as the capacity of Frege lines can become exponentially large.

Finally, we also mention sequent calculi for QBF [KP90, [CMO05]. In contrast
to all the systems considered before they can also manipulate the quantifier prefix
and thus are very strong systems, even stronger than QBF Frege [BP16]. However,
there are also various restricted versions of intermediate strength [Egl12].

QBF sequent calculi and Frege systems enjoy a close connection to first-order
theories of bounded arithmetic [KP90l [CMO05, BP16]. Via different translations
many of the QBF resolution systems considered here are also closely related to
first-order logic [Egll6] [SLB12].
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