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Abstract. We present QBFFam, a tool for the generation of formula fam-
ilies originating from the field of proof complexity. Such formula fami-
lies are used to investigate the strength of proof systems and to show
how they relate to each other in terms of simulations and separations.
Furthermore, these proof systems underly the reasoning power of QBF
solvers. With our tool, it is possible to generate informative and scalable
benchmarks that help to analyse the behavior of solvers. As we will see
in this paper, runtime behavior predicted by proof complexity is indeed
reflected by recent solver implementations.

Keywords: Quantified Boolean Formulas - Formula Generator - Bench-
marking.

1 Introduction

In recent years, much progress has been achieved in the theory and practice
of solving quantified Boolean formulas (QBF) [12], offering a rich solving in-
frastructure, ranging from preprocessing over solving to result validation, strat-
egy extraction, and theoretical lower bounds. As the decision problem for QBF
(QSAT) is PSPACE-complete, many practical application problems [35] from
fields such as formal verification, artificial intelligence, and reactive synthesis
can be efficiently encoded in QBF and handed over to a QBF solver. Because of
the PSPACE-completeness of QSAT, however, solving a QBF is a difficult task.

To solve QBFs various solving approaches have been presented (see [12] for
a description of recent QBF solving techniques). Conflict-driven clause/cube
learning (QCDCL) generalizes the successful CDCL paradigm that is dominant
in SAT solving. Fxpansion-based techniques that build propositional abstractions
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and then exploit the power of SAT solvers have been extremely successful in the
last QBFEval competitions [34].

Empirical observations indicated that different approaches have a different
reasoning power, resulting in a more diverse solving technique landscape than
present in SAT. These observations can be confirmed by proof complexity re-
sults, offering explanations how the different approaches relate to each other by
establishing separation and simulation results of the proof systems underlying
the solvers. In many cases, formula families play a crucial role to characterize
what is easy/hard for a solver.

In this paper, we present QBFFam, a tool for generating prominent formula
families from proof complexity. With this tool, we provide a diverse collection of
benchmarks that can be arbitrarily scaled and that are used in proof complexity
to compare those proof systems that underlie the behavior of the state-of-the-art
solvers. In this way, it becomes possible to obtain an improved understanding
of solver implementations and their behavior, because for the generated families
many theoretical results with respect to lower and upper bounds have been
established.

Our tool is available at

https://github.com/marseidl/qbffam.git

It is implemented in Python and is called via gbffam <family> <n> where n is
the size of the generated formula according to the definition of the respective
family and family is one of the following 12 formula families:

KBKF KBKF_LD KBKF_QU
Parity LQParity QUParity
EQ EQ-Sq BEQ
LONSING TRAPDOOR CR

Details on the formula families as well as an overview of their applications
in proof complexity are given in Section [3| All of the generated formulas are
false QBF's in prenex conjunctive normal form (PCNF) and have the structure
QX ...QX,.¢ where the prefix Q1 X ... Q,X, contains quantifiers Q; € {V, 3}
and the matrix ¢ is a propositional formula in conjunctive normal form (CNF).
As usual, a CNF is a conjunction of clauses, a clause is a disjunction of literals,
and a literal is a variable or a negated variable. All formulas are closed, i.e.,
all variables are quantified. Formulas in PCNF are typically represented in the
QDIMACSﬂ format which is supported by the majority of modern QBF solvers.

Organisation. The rest of the paper is structured as follows. We first review
related work in Section [2] In Section [3| we discuss the 12 formula families sup-
ported by QBFFam. Here we also give an overview of relevant results from proof
complexity for these formulas in several QBF proof systems. In particular, we
report which formula family has/does not have short proofs in what proof sys-
tems. In Section [f] we describe a case study, where we evaluate modern QBF's

4 http://www.qbflib.org/qdimacs . html
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solvers on two formula families. We conclude with an outlook to future work in
Section [B

2 Related Work

The tool most closely related to QBFFam is the tool CNFGen [29] which is a genera-
tor for crafted SAT instances from propositional proof complexity. Among others,
it supports the generation of formula families such as the pigeonhole formulas
or the Tseitin formulas. Many of the provided formula families are known to be
exponentially hard for propositional resolution and therefore for plain resolution-
based CDCL solvers, as propositional resolution and (non-deterministic) CDCL
are known to be equivalent [3)33]. This is also underpinned by experimental eval-
uations. Together with the rigorous lower bounds obtained in proof complexity
such experiments help to understand the solving behavior of SAT solvers, iden-
tify their limitations, and also point towards directions for improvement.

To the best of our knowledge, there is no similar generator in the context of
QBF solving so far. There are tools and frameworks for generating hard random
formulas with a CNF matrix [15] or non-CNF matrix [18]. These random gen-
erators are used to empirically support theoretical characterizations of random
formulas (cf. for example [17]). On the practical side they form the foundation
for fuzzing, a testing technique that aims to find defects in solvers by massively
solving random instances, thus achieving high code coverage, which is important
to detect conceptual errors and only sporadically triggered corner cases |14].

3 Formula Families

Currently, our tool QBFFam supports the generation of 12 different formula fam-
ilies which are summarized in Table [1| together with a characterization in terms
of number of quantifier alternations, number of variables, and number of clauses.
Additionally, we also provide information on their proof complexity indicating
for which proof systems short proofs or lower bounds are known.

Q-resolution (QRes) is the simplest among the considered proof systems, pro-
viding rules for resolution over existential variables and universal reduction [28§].
In QRes-QU [20] resolution over universals is allowed as well. In long-distance
resolution QRes-LD [1] certain resolution steps, forbidden in Q-Resolution, gen-
erating tautologous clauses are allowed. The system QRes-LQU™ [2| combines
long-distance resolution with resolution over universals, yielding a very power-
ful proof system. Another extension of QRes is QRes-SYM [26] which is able to
exploit symmetries of formulas [27].

The proof system VExp-Res [25] is the formal basis for expansion-based QBF
solving. In addition to the resolution rule it has a rule that captures the expan-
sion of universal variables and the renaming of existential variables in terms of
annotations. The more powerful proof systems IR-calc and IRM-calc provide more
flexibility than VExp-Res in the way how and when annotations are obtained [10].

In the following, we briefly discuss the supported formula families.
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Table 1. Characteristics of the families and overview of some results from proof theory.

formula | #alt #vars #cl || QRes QRes- QRes- QRes- VExp- IR- IRM- QRes-
family LD QU LQU'Y Res «calc calc SYM
KBKF n+1 4n  4n+1|| X v v v X X v v
KBKF.LD |n+1 4n 4n+1|| X X v v X X X v
KBKF_QU n+1 b5n 4n+1 X v X v X X v v
Parity 2 2n  4n-2| X 4 X 4 4 v v v
LQParity 2 2n  8n—6| X X X v v v v v
QUParity 2 2n+1 8n—6| X X X X v v v v
EQ 3 3n 2n+1|| X v X v X X v v
EQ-Sq 3 nP+4n 5n? X v/ X v/ X X v/ v
BEQ 4 6n+25n+2|| X v X v X X v X
CR 2 n? 2n v v v v v v v v
TRAPDOOR | 3 O oW»| v v v Vv v /
LONSING 2 0 om®|| v v/ v/ v/ v/ v/ v v
v ... short proofs (poly size) X ... no short proofs (exponential lower bounds)
F##alt ... number of quantifier alternations

F#vars ... number of variables  #cl ... number of clauses

KBKF Formulas and Extensions KBKF_LD, KBKF_QU. Already in their first paper
on Q-resolution from 1995 [28] Kleine Biining, Karpinski, and Flogel introduced
a formula family that is nowadays known as the KBKF formula family. Since
their inception, the KBKF formulas have triggered lots of research in QBF proof
complexity. The original motivation of [28] was to provide quantified extended
Horn formulas that have no short QRes proofs. Interestingly, the formulas also
provide exponential separations between QRes and QRes-QU [20] as well as be-
tween QRes and QRes-LD [19]. The formulas KBKF have unbounded quantifier
complexity, and much later it became clear [7], that such formulas are indeed
needed for separating QRes and QRes-QU. The KBKF formulas remain hard in
expansion-based systems VExp-Res and IR-calc, but become easy in IRM-calc [10].

Extensions of KBKF have been introduced to obtain hard formulas for more
powerful proof systems. In particular, the formula family KBKF_QU duplicates uni-
versal variables in the prefix and in clauses and becomes hard for QRes-QU, but
remains easy for QRes-LD [2]. Another modification KBKF_LD [2] adds variables
from the innermost existential quantifier block to some clauses. These formulas
are hard for the systems QRes-LD [2] and IRM-calc [10]. All three formula fam-
ilies exhibit many symmetries, making them simple if reasoning on symmetries
is supported [26].
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A simple self-contained proof of the hardness of KBKF in QRes is given in [5].
Most further hardness results mentioned above lift QRes hardness to stronger
proof systems.

Parity Formulas Parity and Extensions LQParity, QUParity. The formulas of
the parity family Parity are Tseitin-transformed CNF representations of QBF's
with structure 3z, ..., 2,V2.(2Vd,) A(m2V —¢,) where ¢, = 21 ®...®x,. The
unique strategy for falsifying the formula is to set the only universal variable z to
1. ..9z,. Hence, the unique Herbrand function for z must compute the parity
function, which is exponentially hard for bounded-depth circuits AC® [22]. As
strategy extraction in QRes and QRes-QU is in AC° [1], the QRes and QRes-QU
proofs of Parity must be of exponential size. An alternative proof of hardness
for Parity in QRes, not relying on the complex machinery of AC° lower bounds,
is given in [7].

In contrast, Parity is easy for QRes-LD [16] and VExp-Res [10]. The ex-
tensions LQParity and QUParity are constructed to obtain hard formulas for
QRes-LD and QRes-LQU™, respectively [10].

Equality Formulas EQ and Extensions EQ-Sq and BEQ. The equality formulas [6]
have a quantifier prefix of the form 3z, ...x,Vu; ... u,3t; ... t, and encode that
x; <> u; for 1 < i < n. The t; variables are Tseitin variables for obtaining a
PCNPF, collected in one clause of size n. Arguably, the equality formulas are the
simplest formulas hard formulas for QRes. In [6] a semantic technique via cost
is developed to show their hardness (as well as many more hardness results).
A related technique [4] is applicable to show their hardness for the expansion
systems VExp-Res and IR-calc. However, they become easy in QRes-LD [8].

The EQ-Sq formulas [§] are a ‘squared’ version of the EQ formulas with n
additional variables in each of the first two blocks and n? innermost Tseitin
variables. They are used to show an exponential separation between QRes-LD
without universal reduction (exponential lower bounds for EQ-Sq) and the proof
system M-Res (short proofs for EQ-Sq) [8].

Finally the blocked equality formulas BEQ introduce a blocker such that sym-
metries are destroyed and cannot be exploited to find short proofs [13]. This
technique does not only work for the equality formulas, but it is a general ap-
proach to eliminate symmetries from a formula without changing its meaning.

Completion Principle, Trapdoor, and Lonsing Formulas. The last block of for-
mulas from Table [I| comprises of three formula families that are easy for all of the
described proof systems. Though QCDCL is associated with the proof systems
QRes and QRes-LD (QCDCL runs can be efficiently translated into QRes-LD
refutations as clauses learned in QCDCL can be derived in QRes-LD), this cor-
respondence is not an exact one as demonstrated by recent research [5,/23]. In
particular, [23] has shown that practical QCDCL does not simulate QRes. This
builds on the completion principle formulas CR, first described in [25], which
describe an easy ‘completion’ game, played on an n X n matrix by two players
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(cf. [25]). These formulas are easy for QRes, but hard for practical QCDCL using
UIP learning |23].

This result was further strengthened in [9], where QRes and QCDCL (with
arbitrary learning schemes) are shown to be incomparable. This is witnessed by
the Parity formulas, which are hard in QRes, but easy in QCDCL (with the
right heuristics, possibly difficult to find in practice)ﬂ

In the opposite direction, the TRAPDOOR and LONSING formulas (first defined
in [9] and [30], respectively) are easy for QRes, but require exponential run-
ning time in QCDCL (even with arbitrary learning schemes). Both principles
build QBFs that incorporate the well-known propositional pigeonhole principle
(PHP). Using the right quantifier prefix, which needs to be obeyed by QCDCL
decision heuristics, they ‘trap’ QCDCL into refuting the PHP formulas (which
are exponentially hard for propositional resolution [21] and hence for (Q)CDCL),
while easy (even constant size) QRes proofs of TRAPDOOR and LONSING exist.

4 Case Study

Our tool QBFFam opens up many possibilities to conduct interesting experiments.
In particular, it can be used to investigate whether the solver implementations
indeed follow the behavior predicted by proof complexity and to compare their
strength.

As a first case study, we consider 30 formulas of the KBKF family as well as
30 formulas of the LQParity family. We selected those families because they
are well investigated in proof complexity and correspond to incomparable proof
systems as discussed above. In both cases we selected the values 10, 15-40, 50,
60, 70, 80 for n.

In our experiments, we considered five solvers in six configurations. The
QCDCL solver DepQBF (version 6.1) [31] was run with and without long-distance
enabled. We included the solver Qute [32] as a second QCDCL solver which sup-
ports dynamic dependency learning. As expansion-based solvers, we included
Raregs [24] which recursively processes the quantifier alternations to build the
propositional abstraction of a formula as well as the non-recursive expansion-
based solver ljtihad. Finally, we included the solver Caqe that implements causal
abstraction [36] and which dominated the QBFEval competitions [34]F over the
last years. All experiments were run on Intel Xeon E5-2620 v4 CPU machines
with the timeout set to 300 seconds and the memory restricted to 7GB.

The results of our experiments are shown in Figure [I The plot on the left
shows the runtimes for the KBKF family. For four of the six solvers, the formulas
are very hard, especially for the expansion-based solvers Rareqs, which does not
solve any formula, and ljtihad, which solves only one formula within the time
limit. Also, for Qute and DepQBF the formulas get difficult with increasing n.
Both get until n = 20. For this formula, DepQBF needs 167 seconds and Caqe

® However, formulas hard for QRes-LD such as LQParity are hard for QCDCL (with
arbitrary heuristics) from a theory point of view.
S http://www.qbfeval.org
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Fig. 1. Runtime comparison on KBKF formulas (left) and LQParity formulas (right).

needs 241 seconds. For DepQBF with long-distance resolution and Qute these
formulas are very easy: all of them are solved in less than one second, confirming
results from proof complexity.

The situation is different for the LQParity formulas (see Fig.|l|on the right).
Here Cage, ljtihad, and Raregs solve all of the formulas quickly. This is also in
accordance with the results from proof complexity. The formulas are hard for the
QCDL-based solvers, which could only solve 24 formulas (both configurations of
DepQBF) and five formulas (Qute).

This also indicates that there is a close connection between the theoretical
properties of the underlying proof systems and the practical implementations of
the solvers.

5 Conclusion

We presented QBFFam, a tool for the generation of instances related to prominent
formula families from proof complexity. We briefly described these families and
surveyed recent results from proof complexity which help to understand the
power of proof systems, and thus the power of QBF decision procedures and
their implementations in QBF solvers. In a small case study we evaluated recent
QBEF solvers on two formula families and could indeed observe that the properties
predicted by proof complexity are reflected by the solving runtimes. This opens
the way to many further interesting experiments.

In future, QBFFam can be extended to support graph-based formulas [11] or
random formulas [6]. Both also play an important role in the context of proof
complexity. Another extension of QBFFam that seems to be of practical interest
is the generation of true formulas. True QBFs are currently not investigated in
proof complexity with the argument that in QBF, proof systems for satisfiability
are dual to those of unsatisfiability. Having such formula families, however, seems
to be useful for evaluating solver implementations as well.
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