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Abstract. QCDCL is one of the main algorithmic paradigms for solving
quantified Boolean formulas (QBF). We design a new technique to show
lower bounds for the running time in QCDCL algorithms. For this we
model QCDCL by concisely defined proof systems and identify a new
width measure for formulas, which we call gauge. We show that for a
large class of QBFs, large (e.g. linear) gauge implies exponential lower
bounds for QCDCL proof size.

We illustrate our technique by computing the gauge for a number of sam-
ple QBF's, thereby providing new exponential lower bounds for QCDCL.
Our technique is the first bespoke lower bound technique for QCDCL.
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1 Introduction

The satisfiability problem for propositional formulas (SAT) is one of the central
problems of computer science. Traditionally perceived as a hard problem due to
its NP completeness, SAT is nowadays very efficiently tackled by SAT solvers,
building on the paradigm of conflict-driven clause learning (CDCL) [27], which
solve problems in even millions of variables on many industrial problems.

The success of SAT solving has been transferred to computationally even
more challenging settings, with quantified Boolean formulas (QBF) receiving key
attention during the last decade |14]. One of the main approaches to QBF solving
lifts CDCL to the quantified level, resulting in QCDCL [34]. In addition to
QCDCL there are a number of further competing approaches to QBF solving [20),
24}|28]. Due to its PSPACE completeness, QBFs allow to encode many problems
more succinctly, thus allowing to tackle even further applications [31].

Understanding which formulas are hard for (Q)CDCL is one of the most
fascinating questions, both from a theoretical and a practical point of view.
The main approach to this problem is through interpreting runs of SAT and
QBF solvers on unsatisfiable formulas as formal proofs of their unsatisfiability.
Since learned clauses in CDCL are derivable in resolution, it was noted early on
that each run of a CDCL solver on an unsatisfiable formula can be efficiently
translated into a resolution refutation [3]. Somewhat surprisingly, the converse
holds as well, and when allowing arbitrary non-deterministic decision schemes,
CDCL and propositional resolution are equivalent [29]. However, practical CDCL
using decision schemes such as VSIDS [33] is exponentially weaker than the full
resolution system [32].
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Nevertheless, practical CDCL schemes are simulated by resolution and thus
proof size lower bounds for resolution translate into lower bounds for CDCL run-
ning time. To obtain such lower bounds we can utilise the vast proof complexity
machinery of resolution lower bound techniques [22] to show a plethora of lower
bounds for combinatorial, random, and further formulas. Indeed, resolution is
arguably the best-understood proof system, intensively studied long before the
advent of SAT solving.

The situation is somewhat more intricate regarding the relation between
QCDCL and Q-resolution, the latter being the simplest and most-studied ana-
logue of propositional resolution for QBF [21]. The first result regarding their rel-
ative strength is due to Janota [19], who proved that practical QCDCL does not
simulate Q-resolution. This can be interpreted as the QBF analogue of Vinyals
result for practical CDCL vs resolution [32] (though [19] actually predates [32]).
In contrast, the celebrated result on the equivalence of non-deterministic CDCL
and resolution [29] does not lift to QBF as very recently shown in [7]: (non-
deterministic) QCDCL and Q-resolution are incomparable, i.e., there exist for-
mulas exponentially hard for Q-resolution, but easy for QCDCL, and vice versa.

This leaves us with the conundrum of how to show lower bounds for QCDCL.
Though we understand Q-resolution fairly well and have a number of dedicated
techniques for lower bounds in that system [51/6)8-10,{12], unlike in the SAT case,
these do not automatically apply to QCDCL.

The existing information on QCDCL lower bounds can be summarized as
follows. In addition to the above-mentioned lower bound of [19] for practical
QCDCL, we showed in [7] that under certain conditions, lower bounds from
Q-resolution can be lifted to QCDCL. Also, while QCDCL runs on false QBF's
cannot be efficiently transformed into Q-resolution proofs, they can be translated
into long-distance Q-resolution proofs, an exponentially stronger proof system
designed to model clause learning in QCDCL [1,/16]. However, we only have very
few examples of hard formulas for long-distance Q-resolution [2,9,/10], which
again are lifted from Q-resolution hardness.

In summary, it is fair to say that QCDCL is rather poorly understood from
a theoretical point of view and in particular lower bound techniques that would
allow to show exponential lower bounds for QCDCL are lacking.

Our contributions. We devise the first dedicated lower bound technique for
QCDCL (with arbitrary clause learning mechanisms including those used in
practise). In contrast to previous lower bounds for QCDCL, our technique does
not import Q-resolution hardness and thus applies to different formulas, regard-
less of whether they are hard for Q-resolution or not. We already mention at
this point though, that our technique is not completely general, but is restricted
to XY-formulas that meet a certain XT-condition, considered already in [7].

Technically, our approach rests on interpreting QCDCL runs in a formal
framework of proof systems, already used in [7]. Further, we define a property
of long-distance Q-resolution proofs, which we call quasi level-ordered. This is
inspired by the notion of level-ordered proofs, introduced in [20], where the order
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of resolution steps in proofs must follow the quantification order in the prefix.
Quasi level-order proofs relax that condition (Definition .

Our lower bound technique then rests on two steps: (1) We show that for X%-
formulas with the XT-condition, QCDCL proofs can be efficiently translated into
quasi level-ordered Q-resolution proofs. (2) We define a new measure called the
gauge of a QBF and show that large (i.e. linear) gauge implies exponential size in
quasi level-ordered Q-resolution. Together, (1) and (2) imply that formulas with
the XT-property and large gauge are hard for QCDCL (our main Theorem .

We illustrate our technique on a couple of examples on which computing the
gauge is fairly straightforward. Thus, though showing (1) and (2) above is rather
technical, the lower bound technique itself is quite easily applicable.

It is also interesting to mention that our new notion of gauge is some kind
of width measure on clauses. Showing proof size lower bounds via width lower
bounds is a very well-explored theme in proof complexity, both propositionally
[4] and in QBF [6,[11]. We show, however, that gauge and proof width are not
related in general.

Organisation. The remainder of this article is organised as follows. We start
in Section [2| by reviewing notions from QBF, including Q-resolution and long-
distance Q-resolution. In Section [3] we sketch QCDCL and explain how to model
it as a formal proof system QCDCL. In Section [4] we introduce a new notion of
quasi level-ordered proofs and give an algorithm to translate QCDCL proofs into
quasi-level ordered Q-resolution. Section [5] introduces our lower bound method
for quasi-level ordered proofs via the gauge measure, which we apply in Section [f]
to a number of old and new QBF families. We conclude in Section [7] with some
open questions.

2 Preliminaries

Propositional and quantified formulas. Variables and negated variables are
called literals, i.e., for a variable x we can form two literals: x and its negation
Z. We denote the corresponding variable as var(z) := var(z) := x.

A clause is a disjunction of literals, sometimes also viewed as a set of literals.
The empty clause is the clause consisting of zero literals, denoted (L). Terms are
conjunctions of literals. Again, terms can be considered as sets of literals. A CNF
(conjunctive normal form) is a conjunction of clauses. For C' = {1 v ... v {,, we
define var(C) := {var(¢y),...,var(¢y,)}. For a CNF ¢ = C; A ... A C), we define
var(¢) := J;_, var(C;). A clause C is called tautological, if there is a variable x
with z, %z € C.

An assignment o of a set of variables X is a non-tautological set of literals,
such that for all z € X there is £ € o with var(¢) = x. The restriction of a clause
C by an assignment o is defined as C|, := T (true) if Cno # &, and Ve g, ¢
otherwise. One can interpret ¢ as an operator that sets all literals from o to the
Boolean constant 1. We denote the set of assignments of X by (X).

A @QBF (quantified Boolean formula) & = Q - ¢ is a propositional formula
¢ (also called matriz) together with a prefiz Q. A prefix Q121Q225 ... Qrxy
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consists of variables 1, ...,z and quantifiers Q1, ..., Qx € {3,V}. We obtain an
equivalent formula if we unite adjacent quantifiers of the same type. Therefore
we can always assume that our prefix is in the form of Q = Q] X1Q5X> ... QL X,
with non-empty sets of variables X1, ..., X, and quantifiers @}, ..., Q% € {3,V}
such that Q; # Qj,, for i € [s — 1]. For a variable z in Q we denote the
quantifier level with respect to Q by Iv(z) = lvg(z) = 4, if x € X;. Variables
from @ are called ezistential, if the corresponding quantifier is 3, and universal
if the quantifier is V.

A QBF with CNF matrix is called a QCNF. We require that all clauses from
a matrix of a QCNF are non-tautological, otherwise we just delete these clauses.
We further require that all variables in the matrix appear in the prefix. Since we
will only discuss refutational proof systems, we only consider false QCNFs.

A QBF can be interpreted as a game between two players 3 and V. These
players have to assign the respective variables one by one along the quantifier
order from left to right. The V-player wins the game if and only if the matrix of
the QBF gets falsified by this assignment. It is well known that for every false
QBF & = Q- ¢ there exists a winning strategy for the V-player.

Q-resolution and long-distance Q-resolution. Let C'; and C5 be two clauses
of a QCNF &. Let also £ be an existential literal with var(¢) ¢ var(Cy) uvar(Cy).
Then the resolvent of C1 v £ and Cy v £ over ¢ is defined as

¢ _
(Cl \ é) > (CQ \ 6) = Cl \ CQ.
Let C:=uiVv...VUp VI V...VZy VU V...V Vs be aclause from &, where
UL, ..., Um,V1,. ..,V are universal literals, x1,. .., z, are existential literals and
v1,...,0s are exactly those literals v € C such that v is universal and lv(v) >
lv(z;) for all ¢ € [n]. Then we can perform a reduction step and obtain

red(C) == (U1 V ... V Uy VT V ...V Ty).

For a CNF ¢ = {C4,...,Cy} we define red(¢) := {red(C}),...,red(Ck)}.

Q-resolution [21] is a refutational proof system for false QCNFs. A Q-resolution
proof 7 of a clause C' from a QCNF & = Q - ¢ is a sequence of clauses m =
Ci,...,Cy with C,,, = C. Each C; has to be derived by one of the following
three rules:

— Axiom: C; € ¢;
— Resolution: C; = C; » Cy, for some j,k < i and x € vars(®), and C; is

non-tautological,
— Reduction: C; = red(C}) for some j < i.

Note that none of our axioms are tautological by definition. A refutation of
a QCNF & is a proof of the empty clause (L).

To model clause learning in QCDCL, the proof system long-distance Q-
resolution was introduced in [1}/34]. This extension of Q-resolution allows to derive
universal tautologies under specific conditions. As in Q-resolution, there are three
rules by which a clause C; can be derived. The axiom and reduction rules are
identical to Q-resolution, but the resolution rule is changed to
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— Resolution (long-distance): C; = C; > Cy, for some j, k < i and x € varz(P).
The resolvent C; is allowed to contain a tautology w v @ if u is a universal
variable. If u € var(C;) nvar(C}), then we additionally require Iv(u) > lv(x).

Note that a long-distance Q-resolution proof without tautologies is just a Q-
resolution proof.

3 QCDCL as a formal proof system

In this section we review quantified conflict-driven clause learning (QCDCL) and
its formalisation as a proof system from [7]. This provides the formal framework
for our subsequent proof complexity analysis.

QCDCL is the quantified version of the well-known CDCL algorithm (see
[27133] for further details on CDCL, and [17,23})34] for QCDCL). Let & = Q-¢ be
a false QCNF. Roughly speaking, QCDCL consists of two interleaved processes:
propagation and learning.

In the propagation process we generate assignments with the goal to either
find a satisfying assignment or to obtain a conflict. We start with clauses from
¢ that force us to assign literals such that we do not falsify these clauses (called
unit clauses). The underlying idea of this process is unit propagation. One can
think of a clause z1 v ... v x, as an implication (T A ... AZTp—1) = Z,. That is,
if we already assigned the literals Z,...,Z,_1, then we are forced to assign x,,
in order to satisfy this clause. In QBF, we also insert reduction steps into this
process, i.e., we are interested in clauses that become unit after reduction. For
example, the clause (T A... A Zp—1) — (2, v u) for an existential literal z,, and
a universal literal v with lv(z,) < lv(u) can also be used as a ground clause for
propagating x,,.

Performing unit propagation, the goal is to prevent a conflict for as long as
possible. However, it is not guaranteed that we can even perform any unit prop-
agations by just starting with the formula. Therefore we will make decisions, i.e.,
we assign literals without any solid reason. With the aid of these decisions (one
can also think of assumptions) we can provoke further unit propagations. Since
decision making is one of the non-deterministic components of the algorithm, we
only make decisions if there are no more unit propagations available. In QCDCL
these decisions follow the quantification order, i.e., we always decide a variable
from the leftmost quantifier block.

After obtaining a conflict, i.e., falsifying a clause, we start the clause learning
process. Here the underlying idea is to use Q-resolution resp. long-distance Q-
resolution. We start with the clause that caused the conflict and resolve it with
clauses that implied previous literals in the assignment in the reverse propagation
order. At the end we get a clause such that is derived from existing clauses by
long-distance Q-resolution. We add the learned clause to ¢, backtrack to a state
before we assigned all literals of this clause and restart the propagation process.
The algorithm ends when we learn the empty clause (L) and therefore obtain a
refutation of @.
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QCDCIL has to handle both refutations of false formulas as well as prove the
validity of true formulas. Therefore one would additionally need to implement
cube learning (or term learning) for satisfying assignments. Since we are only
interested in refutations (otherwise we could not compare with Q-resolution), we
will omit this aspect of QCDCL.

To prove rigorous lower bounds on the running time of QCDCL we cast
QCDCL as a formal proof system. We recall the relevant details from [7], where
we fully formalised all components of QCDCL. Each QCDCL run consists of
backtracking steps and restarts. Between them we create trails, in which we
store all information on decisions and unit propagations.

Definition 1 (trails, repeated from [7]). Let & = Q- ¢ be a QCNF in n
variables. A trail T for @ is a sequence of literals (or L) of variables from &
with some specific properties. We distinguish two types of literals in T : decision
literals, that can be both existential and universal, and propagated literals, that
are either existential or L. We write a trail T as

T = (p((),l)v e 7p(0,gg); dl,P(1,1)7 e 7p(1,g1); cee; dr7p(r,1)a cee 7p(r,g,~)):

where we denote decision literals by d; and propagated literals by p; ;). We are
not allowed to make a new decision unless there are no more propagations pos-
sible. Also, decision literals have to be level-ordered, i.e., we have to choose a
leftmost quantified variable (still unassigned) as the next decision.

There are some further requirements on T, for which we refer to [7].

For unit propagation we need the notion of unit clauses that allow us to
assign a variable without making a decision. We call a clause C' a unit clause if
red(C) = (z) for an existential literal x or x = L.

The next definition presents the main framework for the analysis of QCDCL
as a proof system. After having defined trails in a general way, we want to specify
the way a trail can be generated during a QCDCL run.

Definition 2 (QCDCL proof systems [7]). Let ® = Q- ¢ be a QCNF. We
call a triple of sequences

t=Tis -, Tm), (C1,. .., Cp), (71, ..., )

a QCDCL proof from @ of a clause C, if for all i € [m] the trail T; uses the
QCNF Q- (¢ u {C4,...,Ci_1}), where C; is a clause learnable from T; and
Cy, = C. Each 7; is the long-distance Q-resolution derivation of the clause C;
from Q- (¢ L {Ci,...,Ci_1}) that we learned from the trail T;.

Between two trails T; and T;11 we backtrack to some point which we can
choose freely. Backtracking to the start (before any variable was assigned) is
called restarting. If C = (L) we call v a refutation.

By sticking together my, . .., Tm, we obtain a long-distance Q-resolution deriva-
tion m of C from ®. We identify QCDCL proofs with this exact .

We require that all trails are naturally created, which means that we are not
allowed to skip unit propagations if they are possible, as we explained before. A
more detailed description of this condition is given in [7].
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We remark that though QCDCL proofs are basically long-distance Q-resolution
derivations (i.e., QCDCL is simulated by long-distance Q-resolution), these sys-
tem are not equal as QCDCL imposes a particular structure on long-distance

Q-resolution proofs. Indeed, long-distance Q-resolution is exponentially stronger
than QCDCL (cf. [7]).

4 Quasi level-ordered proofs

For the remainder of this article we will entirely focus on X% formulas and
throughout fix the prefix AXVUIT, where X, U, and T are pairwise disjoint and
non-empty sets of variables.

Our ultimate aim will be to develop a lower bound technique for such formulas
for QCDCL. Conceptually, our technique is inspired by an approach for level-
ordered proofs, which is why we recall that notion from [20].

Definition 3 ([20]). A long-distance Q-resolution proof ® from a QCNF & is
called level-ordered if for each path P in m and two resolution steps in P over
variables {1 and lo the following holds: if the resolution over {1 is closer to the
root than the resolution over {a, then lv(f1) < lv({3).

For level-ordered proofs one can devise lower bounds as follows. A level-
ordered long-distance Q-resolution refutation 7 of a X%-formula @ = 3IXYU3T - ¢
always starts with T-resolutions and ends with X-resolutions. We then count the
X-clauses at the transitions from a T-resolution to some X-resolution. For each
7 € (X) we can find such a clause C, that is falsified by 7.

We will use this idea in a more general setting by introducing the notion of
quasi level-ordered proofs where only the existence of these C; is required.

Definition 4. A long-distance Q-resolution refutation © of a X% formula with
prefic AXYUIT is called quasi level-ordered, if for each assignment T € (X)
there exists an X-clause C which is falsified by T and the subproof mc. S w of
C, is level-ordered.

Clearly, level-ordered proofs are quasi level-ordered, but the converse does not
hold in general.

In Section [5| we will devise a lower bound technique for quasi level-ordered
proofs. To get the connection to QCDCL, we show that each QCDCL refutation
of X% formulas with a special property can be efficiently transformed into a quasi
level-ordered Q-resolution refutation. The property needed is the XT-property,
which we recall from [7].

Definition 5 ([7]). Let @ be a QCNF of the form IXVUIT-¢. We call a clause
C in the variables of ®

— T-clause, if var(C) n X = &, var(C) nU = & and var(C) nT # J,
— XT-clause, if var(C) n X # &, var(C) nU = & and var(C) n T # &,
— XUT-clause, if var(C) n X # &, var(C) nU # & and var(C) n'T # .
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We say that @ fulfils the XT-property if ¢ contains no XT-clauses as well
as no unit T-clauses and there do not exist two T-clauses C1,Cy € ¢ that are
resolvable.

Intuitively, this says that there is no direct connection between the X and T
variables, i.e., @ does not contain clauses with X and 7T variables, but no U vari-
ables. This XT-property allows us to prove several properties regarding QCDCL
refutations.

Lemma 6 ([7]). Let @ be a QCNF that fulfils the XT-property. Then the fol-
lowing holds:

(i) It is not possible to derive XT-clauses by long-distance Q-resolution.
(ii) It is not possible to resolve two XUT-clauses over an X -literal in a QCDCL
proof.
(iii) Each QCDCL refutation of @ is a Q-resolution refutation (not just a long-
distance Q-resolution refutation).

Now we will work towards the transformation of QCDCL proofs into quasi
level-ordered Q-resolution refutations. This transformation is described as an
algorithm in the following theorem.

Theorem 7. Let & be a X% QCNF that fulfils the XT-property. Then each
QCDCL refutation m of @ can be efficiently transformed into a quasi level-ordered
Q-resolution refutation ' of @ with |7'| € O(|x|*).

Proof. First, because of the XT-property each QCDCL refutation is also a Q-
resolution refutation.

Let m = Cy,...,C,, = L. Note that clauses could occur more than once in
a proof since we cannot simply shorten a proof in QCDCL. Hence we will use
indices to identify clauses in a proof. Each index not only determines the clause
itself, but also its position in the proof. This is the reason why we will only use
indices in the algorithm in order to store informations about a particular clause.

Technically, we define an order that will help us determining if a resolution
Cyq = C, takes place before or after another resolution Cy > C¢ in a given
proof. For this we define a total order < on {{d,e}: d,e € N, d # e} as follows:

A< B < max A < max B or (max A = max B and min A < min B).

We use the notation A < B for A < B and A # B.

We sketch how the transformation (Algorithm works: Throughout the
whole process we work with two sets Mx and Mxyr. The set My contains
indices of X-clauses, where initially we start with Mx = {m} (remember that
Cyn = (1)). For each ¢ € Mx we check whether the clause C, has a level-ordered
subproof. If the subproof is not level-ordered, and if the last step before C. was
an X-resolution, we just add the indices both parent clauses of C. to Mx and
delete ¢ from it. Otherwise, if the subproof is not level-ordered, but the last step
before C,. was no X-resolution, we search for the last transition that violates
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Algorithm 1: The algorithm needs a QCDCL refutation 7 as input and
outputs a quasi level-ordered long-distance Q-resolution refutation =’.

1 Mx :={m}; Mxur :=; L:=g; =7 i:=1;
2 while Myx # & do

3 while Mx # ¢ do
4 choose ¢ € Mx maximal;
5 if subproof e, of C. is level-ordered then
6 ‘ add c to L;
7 else
8 if last step in 7Tlcc was a resolution over X, say C. = Cy ;1 C. then
9 ‘ add d and e to Mx
10 else
11 Under all transitions from X-resolutions to T-resolutions in
me, of the form Cy i Cl = Cy and Cy b Cy = Cj let {d, e} be
maximal with respect to <;
12 W.lLo.g. let Cq be the XUT-clause and C. be the X-clause
(otherwise swap d and e);

13 add (d, e, c) to MxuT;

14 add e to Mx;

15 end

16 end

17 delete ¢ from Mx;

18 end

19 M}(;%JT = MXUT;

20 =1+ 1

21 while Mxyr # & do

22 Choose (d, e, c) € Mxur;

23 Let Cq,Ca,,Cas, ..., C4,,Cec be the path from Cy to C.. Since C. is
an X-clause, all T-literals from C,4 have to be resolved away. Let
Cay =Cy i Ce, Coy = Ca;_, ¥ Ch,_, for T-variables r;, some indices
bj—1,j=2,...,k and C. = red(Ca,);

24 Add the clauses C,y = Ca 3 Chy, Gy i= Cyr_ 54 Gy, for
j=3,...,kand C%H = red(Ca;C). If somewhere the resolution does
not work due to a lacking literal r; or x, we define the corresponding
C,l;_ as the clause that lacks this literal. The C,l;_ are inserted at the
end of the proof.;

25 add aj,,; to Mx;

26 delete (d, e, c) from Mxur;

27 end

28 end
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the level-order condition. This must be a transition from an X-resolution to a
T-resolution. After this transition there will be only T-resolutions until we reach
C.. One of the parent clauses of this X-resolution, which we call Cy and Ce, is an
X-clause and the other one is an XUT-clause due to the XT-property (Lemma
[6). The index of the an X-clause (either d or ) is again stored in My, while
we delete ¢ from Myx. However, for the XUT-clauses, which are stored as triples
(d,e,c) in Mxyr (where Cy is the XUT-clause), we have to add several clauses
to the proof, including a new X-clause C,,. This clause C, is then added to Mx
as well, and the loop repeats until there are no more clauses in My left. Note
that these added clauses will be part of a dead end in the proof and therefore
are not necessary for the refutation itself. However, we need these new clauses
for a counting argument in our lower bound technique.

We will show that at the end we return a proof that is quasi level-ordered.
More specifically, the X-clauses we detect during the run whose subproofs are
level-ordered will be exactly the clauses C, from the definition of quasi level-
ordered proofs. This holds because in each X-resolution we detect during the
algorithm we can choose which parent clause we will consider next, hence we
can choose the polarity of the X-variable we resolve over in the current step.
At the end, this last X-clause (whose subproof is level-ordered) only consists of
variables with the right polarity as previously chosen. Figure [1| depicts how the
algorithm transforms a proof.

Further details on the correctness and running time of the algorithm are
contained in the appendix (Section . O

A detailed example that illustrates the proof transformation in Algorithm
is contained in the appendix (Section [A.2)).

Algorithm[I]can be easily modified to also transform long-distance Q-resolution
refutations by adding more case distinctions to line However, this might lead
to an exponential blow up.

5 A lower bound technique via gauge

Now that we have proven that QCDCL is simulated by quasi level-ordered proofs,
we continue by introducing a measure for X% QCNFs that will provide an expo-
nential lower bound for quasi level-ordered refutations of these formulas.

Definition 8. For a X% QCNF & with prefiz IXVYUIT let W be the set of all
Q-resolution derivations m from @ of some X-clause such that m only contains
T-resolution and reduction steps. We define the gauge of @ as

gauge(P) := min{|C| : C is the root of some m € Wg}.

Intuitively, gauge(®) is the minimal number of X-literals that are necessarily
piled up in a level-ordered long-distance Q-resolution derivation (which in this
case is always a Q-resolution proof) in which we want to get rid of all T-literals
(hence we consider proofs of X-clauses).
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Cq C,
Xur X
l.-o. l.-o
Cll C3 C4 C5 C6
X X X Xur X
Cy Cio Cg
X X X
Co=(1)
X

Fig. 1. Sketch of the functionality of the algorithm. Below each clause C; we specify
the type of clause (X- or XUT-clause). Newly added parts are coloured red. Triangles
labeled with “l.-0.” are level-ordered subproofs, otherwise they are not level-ordered
and we can find a transition from an X-resolution to a T-resolution. The corresponding
clause C. is then one of the C; clauses for a particular 7.

Before showing how gauge lower bounds imply proof size lower bounds let us
consider an example for which we recall the CR,, formulas from [20].

Definition 9 (|20]). The QCNF CR,, consists of the quantifier prefic

31}(171), cee ax(l,n)am(ll)v e ,J)(Zn), ce ,J}(n,l), ey x(nﬁn)Vuﬂsl, ey Sn,tl, [N ,tn

and matriz clauses (x5 v u v 8;), (T v 4 v t;) fori,j € [n] as well as

Viepn) 51 and \/ e[ ti-

The CR,, formulas describe a ‘completion’ game on an (n x n)-matrix (cf.
[20]). It is readily checked that the CR,, formulas fulfil the XT-property. We can
now compute their gauge. Note that according to our convention, the T-variables
comprise of all variables s1,...,Sn,t1,...,tn.

Lemma 10. We have gauge(CR,) = n.
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Proof. Since there are no X-clauses as axioms, we necessarily need to resolve
over T somehow. For this we need T-literals of negative polarity, hence each
m € Weg,, contains \/ie[n] 5, or \/ie[n] t;. In each m € Wey,, every T-literal has to
be resolved away. For this reason we need the corresponding clauses x; ;) v u v s;
or I(; ;) v U v t;. Because we cannot resolve over X in m € Weg, , there are at
least n X-literals that are piled up and therefore gauge(CR,) = n. O

Towards our lower bound technique we now estimate the size of derivations
of X-clauses in terms of gauge.

Lemma 11. Let ® be a £5 QCNF. Let 7 be a level-ordered Q-resolution proof
from @ of a non-tautological X-clause D with |D| = ¢ such that 7 is a subproof
of a refutation of ®. Then |r| = 299u9¢(®)—c,

Proof. Let V' := X\var(D). For each assignment 7 € (V') we will find a path
P, in 7w, by going backwards starting from D. For each resolution step over
x(; ) € V we choose the path whose literals are negated by 7, hence we choose
the clause that contains z if 7(x) = 0 and the other clause otherwise. If there
are resolution steps over variables from var(D), then we will always choose the
literal from D. If we reach a reduction step, we will just expand the path by this
one clause. If we detect a resolution step over a T-literal, we stop there.

Let C; be the clause at which we stop. Clearly, the subproof m¢_ of C;
is one of the derivations in Wy, hence |C;| = gauge(®). Then C; has to be
a non-tautological X-clause with at least gauge(®) different X-literals. Then C.;
contains at least gauge(®) — ¢ different X-literals whose variables are in V. These
literals are negated by the assignment 7.

Now let a be the number of these clauses C; by summing over all 7. Since
for each C; there are at most | X| — gauge(®) variables that are not contained
as some literal in the clause, there are at most 2/X1-8a1e(?) paths that can lead
to each C.. Multiplying with the number of C; gives us at least the number of
paths 7 € {(V'), hence

ol X|—gange(?) ., 5 9|X|—c

ea> Q\X\—C/Qle—gauge(ds) — ggauge(®)—c

Since each C; is a clause from 7, we get |7| > a > 282v8e(®)—¢, O

Note that the bound from Lemmais an exact lower bound (no asymptotics
involved). We will now use Lemmato get a lower bound for quasi level-ordered
long-distance Q-resolution refutations. We will do this with a similar counting
argument as in Lemma [11| by counting the number of clauses C; in quasi level-
ordered proofs.

Proposition 12. FEach quasi level-ordered long-distance Q-resolution refutation
of a B4 QCNF & has size 2°(90u9¢(®)),

Proof. Let m be the shortest quasi level-ordered refutation of @. By the definition
of quasi level-ordered proofs we can find clauses C, for each 7 € (X).
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Let h := min,c(xy |C7|. By Lemma we get || > 282 @)~k hence h >
gauge(®) — log |7|. Each clause C; can have at most 2/X|=" assignments o € (X
such that C, = C;. Let a := [{C; : 7€ (X)}|, then a - 21XI=" > 21XI and thus

@
i > a > 2 > gmuee(®)—log|x| _ anrg'()
T

We conclude that |7|? € 29 (sauge(®)), O

We combine Theorem [7] and Proposition [[2] above and obtain a lower bound
for QCDCL on formulas with the XT-property.

Theorem 13. Each QCDCL refutation of a X5 QCNF & that fulfils the XT-
property has size 2(90uge(®))

6 Applications of the lower bound technique

We now apply our new lower bound technique via gauge to show exponential
lower bounds for QCDCL proof size (and thereby for QCDCL running time) for
a number of QBF families. First, by combining Lemma [10| with Theorem [13| we
obtain hardness for the CR,, formulas from [20].

Corollary 14. The formulas CR,, require exponential-size proofs in QCDCL.

With this result we gain an improved separation between Q-resolution and
QCDCL. It was already shown in [7] that Q-resolution and QCDCL are incompa-
rable. This involves constructing QBF's that are easy for QCDCL, but hard for
Q-resolution, and vice versa. One direction is shown via the QParity formulas
(Definition [I§ below), which are hard for Q-resolution [9], but easy in QCDCL [7].
For the other direction, [7] used the Trapdoor [7] and Lonsing formulas [23], both
of which are easy for Q-resolution, but hard for QCDCL. However, both QBF fam-
ilies incorporate the propositional pigeonhole principle (PHP) and the hardness
of these formulas for QCDCL rests entirely on the hardness of PHP for propo-
sitional resolution [18]. This is somewhat unsatisfactory, as the hardness results
do not refer to quantification and in particular do not hold in the presence of
NP oracles (cf. [13[26] for a detailed formal account on how to equip QBF proofs
with NP oracles or equivalently QBF solving with SAT calls).

Our improved separation is shown in Corollary [14] above, as these formulas
are hard in QCDCL, but easy in Q-resolution |20]. Unlike the separations from [7],
this hardness result does not make any reference to propositional hardness but
also holds under NP oracles in the framework of [13].

We also note that Janota [19] already proved hardness of the QBFs CR,, for
QCDCL with UIP learning. Corollary [14] improves on that result as well as our
hardness result holds for arbitrary learning schemes in QCDCL.

As our second example we introduce the following formulas.

Definition 15. Let ENarrow, := 3x1,...,Tpt1 VU1, .-, Ups13t1, ...,y -y with
the matriz v, containing the clauses:
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r1 VvV uyVvity, T1VvVu Vit
TiVUu vViti_1 Vi, Tyvu; vii—1 Vi, fori=2....n
Tn1 V Un+1 V t'ru 'fn-ﬁ-l \% an-ﬁ-l \% tn

It is easy to see that ENarrow,, fulfils the XT-property. Next we will show an
exponential lower bound for ENarrow,, in QCDCL.

Lemma 16. We have gauge(ENarrow,) =n + 1.
Proof. Let m € Wenarrow, - Define the sets of clauses
Zy:={x1 vur vt T1VviuVit}
Zii=A{x; vu; vt Vvt Tpva;vitig vt} fori=2,...,n
Zn+1 :={Tnt1 V Unt1 V ln, Tnt1 V Uns1 Vol

Let C be an axiom clause in 7. Then C has to be contained in some set Z; as
above.

Case 1: C € Z;.
Then we have to get rid of £; € C, hence we need a clause from Z5. But then
we have to get rid of ty and so on: Z7 v Zy v Lo Zp oo Z 0. We

conclude that 7 has to contain at least one clause from each Z;, j € [n + 1].
Therefore we have to pile up n + 1 X-literals.

Case 2: C' € Z; for some i € {2,...,n}.

Then we have to get rid of £;_; and t; € C, hence we need a clause from Z;_;
and Z; 1. After this we have to resolve over ¢;_» and t;,1 and so on, leading to
a chain of resolutions Z; e ... e~ Z; | e~ Z; v> L v v L.
Again, we conclude that 7 has to contain at least one clause from each Zj,
j € [n + 1]. Therefore we have to pile up n + 1 X-literals.

Case 3: C € Zp41.

This works similarly to Case 1, except that we start at Z,, 1 and go back-
wards: 21 e~ Zg e L enn L oenn L. O

Corollary 17. The QQBF's ENarrow,, require exponential-size proofs in QCDCL.

The gauge of a formula is obviously some width measure and it seems natural
to wonder how it relates to the notion of the existential proof width of long-
distance Q-resolution refutations of a formula as studied in [6}{11}[15]. However, it
turns out that these two measures are not directly related. On the one hand, it is
easy to see that ENarrow, has long-distance Q-resolution refutations of constant
existential clause width. Hence these formulas have small (constant) existential
proof width, but linear gauge.

On the other hand, there are also formulas with constant gauge and linear
proof width. For this we revisit the parity formula from [9].

Definition 18 ([9]). QParity,, consists of the prefix Ix1 ... x,Vudts. .. t, and
the matriz

1’1\/1'2\/1?2, 1’1\/i'2Vt2, E1V$2Vt2, flvfgvt_g,
Xr; VvV ti—l \4 Ei, Xr; VvV Ei—l \4 ti, i’i \4 ti—l \2 ti, i’i \4 Ez'—l \2 El fO’I‘iG {3, .o 771}

UV ty, UV i,
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It was shown in [6,|11] that QParity,, requires linear proof width. Here we
modify this formula such that proof width remains unaffected, but gauge is small.
Let mQParity, be the modified variant of this formula that consists of the prefix
zq,. .., Ty, yVudts, ..., t, and the matrix (§) A /\Cenpantyn (y v C). Obviously,
because of the unit clause (7), we have gauge(mQParity,) = 1, but still linear
proof width.

We can also use the QParity,, formulas to show that large gauge alone is not
sufficient to guarantee QCDCL hardness, but some further assumption such as
the XT-condition is needed (cf. the appendix, Section [B.1)).

We continue with the equality formula from [5] as a further example of hard
formulas for QCDCL. In [7] QCDCL hardness of Equality, was already proven by
lifting Q-resolution hardness of these formulas to QCDCL. However, with our new
lower bound technique it is possible to prove QCDCL hardness directly without
importing Q-resolution lower bounds.

Definition 19 ([5]). The formula Equality, is defined as the QCNF
n

g coxpVur w3t oty (B vV ) A /\((a’cz VU v E) A (T v v L))
i=1

Proposition 20. We have gauge(Equality,) = n. Consequently the formulas
are exponentially hard for QCDCL.

Proof. Let m € Wequa1ity - Since none of the axioms are X-clauses, we have to
resolve over T somehow. For this we need the clause t1 v ... v t,. But that means
we have to resolve over each t; at least once in 7, and therefore we will pile up
all n X-variables. O

Further examples in the spirit of the equality formulas can be constructed,
which are all hard for QCDCL via gauge. The appendix (Section [B.2) contains
one such example.

7 Conclusion

We initiated the study of devising lower bound methods tailored to QCDCL.
At the moment our techniques only applies to X5-formulas. Though this is a
quite relevant class of QBFs, also prominently represented in QBF benchmarks
[254130], it would be very interesting to extend the method to QBFs of higher
quantifier complexity.

In another direction, future research should explore further conditions (be-
sides the XT-condition considered here) that allow to efficiently translate QCDCL
into quasi level-ordered proofs and thus enable to show lower bounds via gauge.
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Appendix

In addition to further explanations and examples the appendix contains all proofs
omitted from the main part due to space constraints.

A Missing details from Section

A.1 Further details from the proof of Theorem [7]
Claim. Each step is well-defined and the algorithm terminates.

Proof. Let us consider the first inner while loop from line [2] to For each
¢ € Mx that we delete during the loop, we will add d and e (or sometimes only
one of them) to Mx such that Cy and C. both have smaller depth than C..
Therefore this loop will repeat only finitely often.

Note that for each Q-resolution proof that is not level-ordered, we can find
at least one transition from an X-resolution to a T-resolution. Because of the
XT-property, we do not have any XT-clauses and also no X-resolutions over two
XUT-clauses. The only two remaining possibilities for X-resolutions are between

two X-clauses or between an XUT-clause and an X-clause. Let Cy > C. = Cy

and Cy l>t<1 Cy = Cj be the transition we detected in the algorithm and as sketched
in Figure [2l The case where both Cy and C, are X-clauses is impossible since
the next step is a T-resolution. So we can assume that we find an XUT- and an
X-clause. For each (d,e,c) € Mxyr we have that Cy is the XUT-clause and C,
is the X-clause.

There cannot be another transition from an X-resolution to a T-resolution on
a path downwards starting with the above transition since this would contradict
the maximality of {d, e}, cf. Figure [3| Hence the found transition is indeed the
(or “a”) last one.

In the second inner while-loop from line to we will add only finitely
many new clauses to the proof. Note that all added clauses are inserted after the
original clauses. Since we have only added finitely many triples to Mxyr until
this point, we will repeat this loop only finitely often, as well.

Let us now concentrate on the outer loop from line [I] to 28 We will show
that this loop will repeat only |7|? times.

For each iteration ¢ let

K; := max<{{d,e}: (d,e,c) € M)(;)UT for some index ¢ € N}.

For each (d;,e;,c;) € M)(QJT let ¢; be the index aj,,, of the clause we add
to 7’ corresponding to (d;,e;, ¢;) as described in the algorithm. If these ¢} are
contained in a triple in the next M)(;JUAT), say (dit1,€i41,¢) € M)(H}lT), then we

have {d;;1,€;41} < {d;,e;}. We cannot have {d;,e;} = {d;+1,e;+1} simply due

x
to the fact that ¢, has no path to the resolution Cy, > C,, since we skipped the
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Ce

x t
Fig. 2. Last transition from an X-resolution Cy > Ce to a T-resolution C'y > Cy in the
subproof of C. as it is detected in line [§] of Algorithm

Ce

Fig. 3. Suppose that after the detected {d, e} there is another set {d’,e’} which ini-
tializes a transition from an X-resolution to a T-resolution. However, this would con-
tradict the maximality of {d,e} since we would have d’ > max{d, e} and therefore

{d,e} < {d',€'}.
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resolution with C,,. We cannot get {d;,e;} < {di+1,e;+1} neither because oth-
erwise we would have chosen {d;1,e;11} instead of {d;, e;} when we considered
¢; in the iteration before.

We conclude that we have K; 1 < K; for each iteration ¢. Since these K; are
sets consisting of two indices from original clauses, we can argue that we will
repeat the outer while-loop at most |7|? times. ]

Claim. At the end, we have |7| € O(|x|*).

Proof. We have to count the number of clauses we add to 7’ in each iteration. A
visualization of this part of the algorithm can be seen in Figure 4l Let 7'('2 2 be the

current proof 7’ after the ¢*® time we added a path to 7’ in line For each ¢
we prove by induction that each possible path in WEq) has at most length |7|. For

q = 0 this is trivial since 7T20) = 7. Let the statement be true for qu) and consider

the case WEqH). Let Cj,,...,C}, be a path in WEqH). If all of these clauses were
already contained in 7/ ) then the result follows immediately. Therefore let us
suppose the path contains some clauses we have newly added, say that C; is the
leftmost new clause compared to ﬂzq). But then all clauses C;,,Cj, . 1, ..., C}j, are
new clauses as well, since each new clause in inserted at the end of the proof. By
the method we constructed the clauses C; ,Cj . ,,...,Cj, in line we conclude
that these clauses are some of the Cyy, .. ., C’a;c“, say Coar ..., Cqr . But then we
can find another path Cj,,...,C},_,,Cq,,...,Cq, (we have to set Cy, := C. if
w = k + 1 and we have to insert C,, after C;,_, if Cj,_, = Cy), which has the
same (or even a greater) length as the original path and is completely contained
in qu)' Hence, the original path has length at most |r]|.

All in all, for each (d,e,c) € Mxyr we will add a path of length at most ||
Each ¢ can occur only once in the triples in Mxyr. After we added the path
corresponding to (d,e,c), we will never have to add a path for (d,e,c) again
(one might have to ignore future occurrences of (d, e, ¢) if this particular triple is
detected more than once in the algorithm). However, we added a new index aj,,

which can play the role of ¢ for future triples (d, e, ¢) for which we have to add
new clauses, hence the number of candidates for possible ¢ in M )((Z)UT is at most
|7r|. Note that this only works because m was a QCDCL refutation. In general,
if we would have inserted an arbitrary long-distance Q-resolution refutation m,
we might had to add two new indices to My for each (d,e,c) € Mxyr since
resolutions over two XUT-clauses would be possible.

We conclude that in each outer while-loop we will add at most |7|?> new
clauses to m'. Since we will repeat the outer loop at most |7|? times, the new
proof 7’ will at the end consist of at most O(|r|*) clauses. =

Claim. = is quasi level-ordered.

Proof. We prove that the clauses we have added to L are exactly the clauses
C; from the definition of quasi level-ordered proofs. Let us fix an assignment
7 € (X). Starting from C,,, = (L), for each X-clause C. we check if the subproof
g, is level ordered. If it is not, we can find clauses Cq4, C, € 7 as described
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Cy C,
Cq, Cp,
Caé\/cazvc;jz
- \/C@C »
cen \/,..vcbkq
Ca;‘ Cﬂk
| |
Ca?H Cum

Fig. 4. Visualization of lines and in Algorithm Newly added clauses and
resolutions are coloured in red.

in the algorithm that are resolved over an X-literal . We pick the clause which
contains z if 7(z) = 0 and the other clause otherwise. If we pick an XUT-clause,
say Cq, then we have to jump to the corresponding X-clause Cy; » which we
have added when we chose (d, e, ¢) € Mxyr in the second inner while-loop. Note
that Cy;  is a subclause of C¢ v z (resp. C. v @) since we only omitted the
resolution with C, over . We continue by checking the subproof of Cy (resp. C.
or Cy

)
k+1
At the end, when the X-clause C, has finally a level-ordered subproof 7r’CC,
we will stop there and we set C := C, since we have 7(x) = 0 for each z € C..
Therefore C. is falsified by 7. ]

A.2 An example for Algorithm

We give an example of a formula with a refutation which we transform into a
quasi level-ordered refutation.

Ezample 21. Let ¥ be the QCNF with prefix 3IXVUIT with X = {z,y}, U =
{u}, T = {s,t} and the matrix

(uvs)axvuvs)a@vs)a(yvuvs)A@vuvis) A(zvy)

Alyvuvit)a(svi).
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Further, let 7 be the Q-resolution refutation of ¥ as represented in Figure [5] We
want to transform this proof 7 to a quasi level-ordered proof 7’ by carrying out
the instructions as described in the algorithm. Note that for the sake of simplicity
this proof is exceptionally not necessarily a QCDCL proof since finding a QCDCL
proof that is representative enough to serve as an example is not a trivial thing to
do. However, 7 fulfils at least the properties we need in order to get polynomially
transformed, namely we never resolve two XUT-clauses over X. Also, 7 is most
likely not the shortest possible refutation of ¥, as one can see that the clause
Cs =y v u v s is derived although C; =y v u v s is an axiom clause.

Ci=yvVuVvs Cy=XVuvs

C;=XVyVu

C4:§\/y Cs=xVuvs
Co=yvVuvs Cy=5VT

Cg=yvVuVvt Co=yvuVvt

N

Co=yVvVu
|

Ch=y Cu:quVS

N

Ca=uVs Cy=uVvs

NS

Cis=u
|

Cig =1

Fig. 5. Q-resolution refutation of V.

First, we have Mx = {16} and Mxyr = &. The proof of Cyg, which is just
7 itself, is obviously not level ordered. The last transition from an X-resolution

Yy E
to a T-resolution is at C; < Cio = Ci3 to Cy3 o C14 = (5. Since the last
step in 7 was no X-resolution, we have to add the triple (12,11, 16) to Mxyr
(note that the first number of the triple has to be the index of the XUT-clause).
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Further, we add 11 to Mx and delete 16 from it. The subproof w¢,, of Ci; is
not level-ordered either. The last X- to T-transition in n¢,, is Cy v Cs = Cs

to Cg o Cr = Cs. Because the last step in m¢,, was a reduction and no X-
resolution, we have to add (5,4,11) to Mxyr and replace 11 with 4 in Mx.
Now, the subproof 7¢, is level-ordered, so we can add 4 to L and delete it from
Mx . Because Mx is now empty, we can continue by adding new clauses to .

Ci=yvVuVvs C,=XVuvs

NS

C3=xVyVu

Cy=xVvVy Cs=xVuvs
Co=yvVuvs Cy=5sVTE

Cs=yvuvit Co=yvuvt

e

Cio =yVu
|

Cn =y C12=quVS

Ci3=uVs Ciu=uVvVs

C17=y\/1/l Cis=u

Cis=Yy Cie =L

Fig. 6. Adding the new path of clauses corresponding to (12,11,16) € Mxur.

First, we add the clauses Ci7 = C1o » C14 and Cig = red(Cy7). This new
path, which can be seen in Figure @ corresponds to the triple (12,11, 16), that
can now be deleted from M x . After this we have to add 18 to Mx and continue
with the next available triple from Mxyr, which is (5,4,11). We add the clauses

s t
Clg = 05 > 07, 020 = 09 o Clg and 021 = red(Czo) to m, delete (5,47 11) from
Mxyr and add 21 to Mx. After that, Mxpyr is empty and My = {18,21}.
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In the next iteration, we have to consider the subproofs n¢,, and 7¢,,, which
are luckily both level-ordered. That means we can immediately delete both 18
and 21 from Mx and add them to L. Both Mx and Mxyr are now empty and
hence our algorithm terminates. Our new proof 7" which is represented in Figure
[7] is now quasi level-ordered. The clauses whose indexes are contained in L are
exactly the clauses C; we need for a quasi level-ordered proof. More precisely,
L= {47 18, 21} with Cx'—>1,y'—>1 = Cx.ﬁo’y._q =(Cig = (flj), Ole,yHO =Cy=2Vvy
and Cx>—>0,y0—>0 = 021 =T VY.

Ci=yVuVs Cy=XxVuvVvs

NS

C3=xVyVu

Ci=xVvVy Cs=xVuvs

Co=yvuvs Cy=5VTE

Cio=xVvuvt Cs=yvuVvi Cog=yvuvt
Cp=xVyVvu Co=yVu
C21=x\/y C11=y C12=quVS

Ciz=uVs Cyy=uvs

-~ <

C17=y\/u C15=M
| |

Cis=y Cie =L

Fig. 7. Adding the new path of clauses corresponding to (5,4,11) € Mxyr. This new
proof 7’ is now quasi level-ordered.
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B Further examples for the gauge technique
(complementing Section |5))

B.1 Limitations of the gauge technique: Parity QBFs

Our next example illustrates that some further condition (such as the XT-
property) is indeed required for our lower bound method to work. For this we will
take another look at the parity formula QParity,,. These formulas are known to
be hard for Q-resolution [9], but easy for QCDCL [7]. Nevertheless, we show that
QParity,, has large gauge. Hence this measure alone is not sufficient to imply
QCDCL hardness.

Proposition 22. We have gauge(QParity,) = n.
Proof. We define the following sets of clauses:

Al Z:{xl\/xz\/fg, 1V To V iy, TV Ta Vi, .i‘l\/i‘g\/fg}
Zi = A{xiy1 Vi vV lig1, Tig1 ViV ticn, Tiv1 ViV tign, Tigl vV v i)

Zn i ={u vty Gvi,}

fori=2,...,n—1.

We show that each m € Wgparity, needs at least one clause from each Z; as
an axiom, hence m n Z; # & for every j € [n].

Assume that there is a j € [n] with 7 n Z; = J. Let S be the set of all
symmetries ¢ on QParity, such that o(xy) € {zx,Zx} for each k € [n] and
o(tx) is chosen such that o(QParity, ) < QParity,, (one has to make sure that
o(ty) =0(x1)®...®o(zk)).

Then for each such o € S we can derive o(C) via o(w) and still have o(m) N
Z; = . But then we could easily construct a refutation by just using {c(C) :
o € S}. Then QParity,, without the clauses from Z; would still be a false QCNF.
However, this is not possible since we can construct a winning strategy A for
QParity,\Z;:

A(zy) :=0 for all k € [n]
A(te) :=0forall e {2,...,j}
Aty) :=1@uforall ' € {j+1,...,n}
Therefore our assumption is false and we get m N Z; # J. Using one clause

from each Z; results in piling up all variables z1,...,z, in some polarity, hence
gauge(QParity,) = n. o

B.2 Another application for gauge: Palindrome QBF's

The next example is a formula that follows the same approach as Equality,, from
[5], where the universal player had to fulfil the task of assigning the U-variables
in the same way as the existential X-variables. However, we can replace this task
with another, more complex one. In our case, the existential player has to detect
palindromes in the word that was inputted by the existential player.
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Ezxzample 25. Let QPalin,, be the QCNF with prefix
1XvU3ir
with
X ={x;: je{l,...,n}}
n
U {uk,i,vk cke{0,..n—1}ie {1 bJ}}

T:{tk,i75k5 ke{ov---”_l}vie{1""’£J}}

where the indices from the X-variables are interpreted as integers modulo n. Let
the matrix of the formula consist of the following clauses:

Tivk VY Tn—it1+k V Uk V gy Tivk V Tn—it1tk V Uk V Tk
Titk V Tn—itltk V Uk; V t_k,ia Titk V Tn—itltk V Uki V t_k,z‘
U V EkJ Voo V{k,[%J V Sk

Vg Vitgi V Sk, SoV ...V 8,1

for ke {0,...n—1},ie{1,...,|%]|}.

Let 7 be a total assignment of X. There is a winning strategy for the universal
player by setting uy; to 1 if and only if 7(2;4%) = T(xn—i+k) and vg to 1 if and
only if the word 7(x14%) ... 7(Zp+k) is a palindrome. Then the universal player
has to set each si to 1, negating the last clause in the matrix.

Remark 24. QPalin,, fulfils the XT-property.
Lemma 25. We have gauge(QPalin,) € £2(4/n).

Proof. Let m € Wypaiin, - Since we do not have any X-clauses as axioms, we need
to resolve over T-variables at least once. We partition the matrix of QPalin,,
into the following sets:

+ = - - -
Zy = ATk vV Tpip 1k V Uk Vot Tivk V Tnoipiak V Uk Vet
Zyi = ATivk vV Tpmip 14k V Uk V bk Titk V Tnoipiak V Uk V et
P, :={0pvitr1Vv...v bz Vv Sk}
Nk,i = {’I}k \4 tk,i \ Sk}
S:={5 vVv...v5._1}
Let C € m be an axiom. We claim that S € 7, for which we will distinguish

four cases.
Case 1: C'EZ,L for some k€ {0,...,n—1} and i € {1,,[%”
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Then we have to resolve away tj ;, which can only be done with the clause in
Py, since the clauses from Z,~ ki are blocked because of the uy, ;. But now we have
introduced s; which we can only resolve with the clause from S.

Case 2: C € Z,_, for some k€ {0,...,n—1} and i€ {1,...,|%]|}.

To get rid of tk i, we have to use the clause from Vi ; since Z+ is blocked as
before. But then we have introduces s; and we will need the clause from S.

Case 3: C e P, or C € Ny ; for some ke {0,...,n—1} and i € {1,...,[2“.

Then we have s; € C' and we need to use the clause from S in order to resolve
it away.

Case 4: C e S.

This case is trivial.

We have shown that in each case we have S < . That means we have to
resolve over each sy, in 7. For each k € {0,...,n—1} we can choose if we want to
use Py, or Ny, ; to get rid of the literal 5;. If we choose Py, then we have to resolve
over each t, ; for i e {1, ceey [%J} by using the clauses from Z,jz However, if we
choose N} ;, it suffices to resolve over only one tj ; for some particular i. Hence,
we only have to use one clause from Z,_, for only one i. In the worst case (that
means in the case with the least resolutlons over ty;), we will always pick Ny ;.
More specific, for each k € {0,...,n — 1} there exists an i € {1,...,[%]|} such
that 7 contains at least one clause from Zl€ iy Or Zy ;. . That means we will pile
up at least the X-variables x;, 4k, Tn—i,+1+% for each k € {0,...,n —1}. If we
can find a lower bound for the number of these X-variables, then this is also a
lower bound for gauge(QPalin,,).

First of all, it its obvious that for each k we have x;, yr # Tp_i, +1+k Since
i +k#n—ir+1+k (mod n). Next, we define the following sets of variables:

X = {xik+k7 xn*ik+l+k}

for k € {0,...,n — 1}. As we have argued above, we already know that the
gauge of QPalin, is £2(||J, Xk|). Note that if a pair {z;, 2} is equal to Xj,
then their position in the word ziig...ZT, 1k is symmetric. If n is odd, then
each pair {z;,x/} can represent at most one Xj. For example, for n = 5 the
pair {z3,x4} can at most be X3 since they are only symmetric in the word
zax5r1T2x3. However, if n is even then each pair then each pair {z;,z,} can
represent up to two Xj. For example, for n = 4 the pair {z1,24} is symmetric
in both x1x0x324 and r3xsxi2.

We conclude that for odd n we have |{Xo, ..., X,—1}| = n and for even n we
have [{Xo,..., X1} = . Now, with m different variables we could create at
most O(m?) different pairs X},. Hence we need at least 2(1/n) different variables
to create O(n) different pairs Xj, and therefore || J, Xi| € £2(y/n) and also
gauge(QPalin,) € 2(1/n). o

Corollary 26. The QCNF QPalin, needs QCDCL refutations of size 272(V™).
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