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Abstract

We provide a simple and direct proof of the exponential hardness of the
KBKF formulas in the proof system Q-Resolution.
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1. Introduction

The main objective in proof complexity is to obtain sharp bounds on the
proof size of formulas in different formal proof systems. Traditionally, proof
complexity has focused on propositional logic [1]. In the last decade there
has been intense research on proof complexity of quantified Boolean formulas
(QBF). This has been mainly driven by huge advances in the development
of QBF solvers [2], which successfully tackle numerous applications [3], but
has also uncovered deep connections to circuit complexity [4, 5] and bounded
arithmetic [4].

Among the proof systems studied in proof complexity, the resolution cal-
culus takes centre stage, both in the propositional and in the QBF setting.
Propositional resolution [6, 7] is one of the simplest and best-analysed proof
systems [1, 8], and gained further importance through its tight connections to
CDCL solving [9], established in [10, 11]. Propositional resolution was gener-
alised to QBF in the early 1990s with the system Q-Resolution (Q-Res) [12].
Again this is arguably the simplest and best-studied QBF proof system,
which as in the SAT case underpins QCDCL solving [13].1

There are a number of families of QBFs that frequently appear through-
out the QBF literature. Arguably the most prominent among these are the

1There are many extensions of Q-Res and different QBF solving approaches, with the
precise relations between QBF solving models and QBF resolution calculi subject to on-
going research [14].
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formulas of Kleine Büning, Karpinski, and Flögel, termed the KBKF formu-
las after their inventors, and introduced in the same work [12] in which Q-Res
was developed. For QBF proof complexity, they occupy a similarly central
role as the pigeonhole formulas for propositional proof complexity [15]. The
KBKF formulas (and easy modifications thereof) permeate the QBF proof
complexity literature (e.g. [16, 17, 18, 19, 20, 21, 22, 23, 24]) and give rise to
many lower bounds and separations of proof systems.

In their original form, the KBKF formulas were introduced as the first
hard formulas for Q-Res. This was stated in [12], however no formal proof was
given for the claimed exponential lower bound of KBKF in Q-Res. The paper
[12] contains a proof, but there is general consensus in the QBF community
that this proof sketch only serves as intuition for their hardness and does not
constitute a formal lower bound argument.

The first formal proof of KBKF hardness for Q-Res was only given some
20 years later [20]2, but this was shown as a lower bound for the more powerful
QBF resolution system IR [26], a calculus based on expansion of universal
variables [27]. The system IR simulates Q-Res [26] and hence the lower bound
of [20] implies the lower bound for Q-Res stated in [12]. However, the proof
in [20] is technically very complex and specifically tailored towards KBKF
and IR.

A second, more elegant proof was given in [21]. This used a semantic size-
cost-capacity technique, developed in that paper as a general lower bound
method for QBF calculi. However, this technique is neither directly applica-
ble to KBKF nor to Q-Res. For that reason [21] proved a lower bound for a
modification of KBKF in the stronger system of QU-Resolution, which then
by a separate argument entails the KBKF lower bound in Q-Res.

A third proof was provided in [24], again using a general technique of
formula weight. As with the second proof, this technique does not apply
directly to Q-Res, but to the stronger expansion system IR, already figuring
in the first proof.3

Hence, none of the previous proofs directly works on Q-Res, but all make
detours to stronger proof systems. In addition, they are either very com-
plex (first proof) or use sophisticated general lower bound techniques, not

2The conference version [25] appeared in 2015.
3For completeness, we mention a fourth proof [22]. This proof through Prover-Delayer

games is again quite complex and only yields lower bounds in the weaker system of tree-like
Q-Resolution, thereby not implying the result stated in [12].
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applicable to Q-Res (second and third proof).
Our contribution in this paper is to give a simple and direct proof of the

exponential hardness of KBKF in Q-Res. The proof uses restrictions of Q-Res
proofs by partial assignments together with a simple counting argument.

As explained above, the result itself is not new, but given the importance
of the KBKF formulas in the QBF literature, we believe that our simple and
self-contained argument should be of value to the community. The proof idea
itself is potentially applicable to further formulas.

2. Background

In this section, we cover all the necessary background for the lower-bound
proof in the following section.

Propositional logic. U is a countable set of Boolean variables. A literal is
a variable z in U or its negation z, with var(z) = var(z) = z. The literals
z and z are complementary. A clause is a disjunction C = a1 ∨ · · · ∨ ak of
pairwise non-complementary literals, with vars(C) := {var(ai) : i ∈ [k]}. A
subclause of C is a disjunction of a subset of its disjuncts. A conjunctive
normal form formula (CNF) is a conjunction F := C1 ∧ · · · ∧ Ck of clauses,
with vars(F ) :=

⋃k
i=1 vars(Ci).

An assignment σ to a set Z of Boolean variables is a function from Z
into the set of Boolean constants {0, 1}. The set of all assignments to Z is
denoted 〈Z〉. A partial assignment to Z is an assignment to a subset Z ′ ⊆ Z,
called a subassignment of σ when it agrees with σ on Z ′. We consider the
constant 0 synonymous with the so-called empty clause, i.e. the disjunction
of arity zero.

The restriction of a literal, clause, or CNF φ by σ, denoted φ[σ], is the
result of substituting each variable z in Z by σ(z), followed by applying the
standard simplifications for Boolean constants, i.e. 0 7→ 1, 1 7→ 0, C∨0 7→ C,
C ∨ 1 7→ 1, F ∧ 1 7→ F , and F ∧ 0 7→ 0. We say that σ satisfies φ when
φ[σ] = 1, and falsifies φ when φ[σ] = 0.

Quantified Boolean formulas. A quantified Boolean formula (QBF) is a
formula of the form Q := P · F , where P := ∀U1∃X1 · · · ∀Ud∃Xd is called
the quantifier prefix and F is a CNF called the matrix. The Ui and Xi

are pairwise-disjoint sets of Boolean variables called the blocks of Q. Curly
braces are omitted from blocks when writing a QBF.
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The sets vars∃(Q) :=
⋃d+1

i=1 Xi and vars∀(Q) :=
⋃d

i=1 Ui are referred to as
the existential variables and universal variables of Q, respectively, and their
union vars(Q) as the variables of Q. We deal only with closed QBFs, i.e.
those for which vars(F ) ⊆ vars(Q). The restriction of Q by an assignment
σ is Q[σ] := P [σ] · F [σ], where P [σ] is obtained from P by deleting each
variable in vars(σ) and any redundant quantifiers.

QBF semantics are defined in terms of the two-player evaluation game.
Two players, named universal and existential, assign the variables of a QBF
in the order of the prefix, each player assigning only the variables of his
designated quantification type. If the assignment falsifies the matrix, the
universal player wins, otherwise the existential player wins. A QBF Q is
called false when it has a winning strategy for the universal player; that
is, the universal player can choose assignments to win the evaluation game,
regardless of how the existential player chooses his assignments.

The KBKF formulas. A QBF family is an infinite sequence of QBFs.
The following family, named after its creators Kleine Büning, Karpinski and
Flögel [12], is arguably one of the most famous.

Definition 1 (KBKF family [12]). The KBKF family is the QBF family
whose nth instance is

KBKFn := ∃x1y1∀u1 · · · ∃xnyn∀un∃z1 · · · zn · kbkfn ,

where kbkfn is the conjunction of the clauses

(x1 ∨ y1) ,
(xi ∨ ui ∨ xi+1 ∨ yi+1) , for i ∈ [n− 1] ,
(yi ∨ ui ∨ xi+1 ∨ yi+1) , for i ∈ [n− 1] ,
(xn ∨ un ∨ z1 ∨ · · · ∨ zn) ,
(yn ∨ un ∨ z1 ∨ · · · ∨ zn) ,
(ui ∨ zi) , for i ∈ [n] ,
(ui ∨ zi) , for i ∈ [n] .

The four sets Xn := {x1, . . . , xn}, Yn := {y1, . . . , yn}, Un := {u1, . . . , un},
and Zn := {z1, . . . , zn} partition the variables of KBKFn.

We remark that the formulas are stated slightly differently in [12], con-
taining a further existential variable y0 that occurs positively in the first
clause of kbkfn above and in an additional unit clause (y0). This is easily
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transformed into the definition above, and the two formulations have the
same proof complexity.

Each instance KBKFn is a false QBF. The universal player can win the
evaluation game on KBKFn with this simple strategy.

Strategy 1. For each i ∈ [n], assign ui to the same value as xi was assigned
by the existential player.

Let us give some intuition on this strategy. The existential player starts
by setting one of x1 and y1 to 0, otherwise he falsifies (x1 ∨ y1) and loses
immediately. Assume that the existential chooses x1 = 0 and y1 = 1. If the
universal player tries to win, he will counter with u1 = 0, thus forcing the
existential player again to set one of x2 and y2 to 0. This continues for n
rounds, leaving in each round a choice of xi = 0 or yi = 0 to the existential
player, to which the universal counters by setting ui accordingly. Finally, the
existential player is forced to set one of z1, . . . , zn to 0. This will falsify either
of the clauses (ui ∨ zi) or (ui ∨ zi) for some i ∈ [n], and the universal player
wins.

It is clear from this explanation that the existential player has exponen-
tially many choices, and that the universal player needs to counter all of these
choices in any winning strategy. We will exploit this intuition for a formal
proof of hardness in the proof system Q-resolution, which we introduce next.

The Q-resolution proof system. Q-resolution (Q-Res, [12]) is a refuta-
tional QBF proof system, i.e. a formal calculus that demonstrates the falsity
of a given QBF.

Definition 2 (Q-Res [12]). A Q-Res refutation of a QBF P ·F is a sequence
C1, . . . , Ck of clauses in which Ck is the empty clause and each Ci is derived
by one of the following rules:

A Axiom: Ci is a clause in the matrix F .

R Resolution: Ci = A ∨ B, where Cr = A ∨ z and Cs = B ∨ z for some
r, s < i and some existential variable z.4

U Universal reduction: Ci = Cr∨a for some r < i and universal literal a,
where var(a) is quantified in P after each existential variable in C.

4Note that A ∨B cannot contain complementary literals by our definition of clauses.
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Figure 1: A Q-Res refutation of KBKF1.

The size of a refutation is the number of clauses in the sequence.

Figure 1 shows a Q-Res refutation of KBKF1, depicted conventionally as
a directed acyclic graph. Note that the edges of the graph appoint specific
antecedents for each clause, a choice left implicit in the refutation written as
a sequence. We assume that refutations are in a normal form in which the
graph representation has a unique sink ; that is, the empty clause is the only
clause which is not an antecedent in the application of a Q-Res rule.

A Q-Res refutation π can be restricted by an assignment ε, denoted π[ε].
The technical details of this restriction (i.e. the formal definition of π[ε]) are
not important. We only require two folklore facts about it, in the case where
the assignment is existential.

Proposition 1 (folklore). Given a Q-Res refutation π of a QBF Q, let ε be
a partial assignment to vars∃(Q).

(a) π[ε] is a Q-Res refutation of Q[ε].

(b) Each universal subclause in π[ε] is a universal subclause in π.

As restricting resolution proofs by partial assignments is standard in proof
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complexity, we omit the proof.5

We also make use of a simple property of refutations when the first block
of the refuted QBF is universal. As this property is more specific to Q-Res
we include a proof for completeness.

Proposition 2 (folklore). Let π be a Q-Res refutation of a QBF whose first
block U is universally quantified. Assume further that for all clauses in π
there exists a path to the unique sink, which is the empty clause. Then the
disjunction of the U literals appearing in π is a subclause of some clause
appearing in π.

Proof. If there are no U literals appearing in π, the proposition holds vac-
uously, so let us assume that there are. Since the graph representation of
π has the empty clause at its unique sink, each U literal must be univer-
sally reduced within π. Let C be the first clause in π to which a universal
reduction on a U literal is applied. Since U is the first block, C contains
no existential literals. Hence, the only Q-Res steps applicable to C form a
sequence of universal reductions ending at the empty clause, the unique sink
of π. This sequence of reductions must reduce each U literal in π, and hence
each such literal appears in C.

3. A simple proof of hardness for KBKFn

3.1. Evaluation game strategies for KBKFn

The KBKFn family has some characteristic semantic properties. For ex-
ample, Strategy 1 is not unique. Bad choices from the existential player early
on, for example assigning both x1 and y1 to 0, would falsify a clause volun-
tarily and lose, immediately. From here, the universal player may choose any
assignment and win.

Strategy 1 is unique on a particular subset of the possible games. These
are the games characterised by the set of existential assignments

E := {ε ∈ 〈Xn ∪ Yn〉 : for each i ∈ [n], ε(xi) 6= ε(yi)} .

5A rigorous proof of Proposition 1 along with the definition of π[ε] appears in, for
example, [28, Chapter 5, Facts 5.8 and 5.9].
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In each such game ε ∈ E, the universal player’s assignment according to
Strategy 1 is given by

µε(ui) :=

{
0 if ε(xi) = 0 ,

1 if ε(yi) = 0 .

It is easy to see that the µε form the set U := {µε : ε ∈ E} = 〈Un〉, and that
|E| = |U| = 2n. Our lower-bound proof is centred on the analysis of games
belonging to E, and the role of the corresponding universal assignments U.

Regarding uniqueness, the following can be readily verified by inspection:
if the existential player plays according to some ε ∈ E, at the first moment
his opponent deviates from µε, the existential player would win the game
by setting all remaining existential variables to 1. The resulting existen-
tial assignment does not belong to E, but demonstrates that deviating from
Strategy 1 at any point during a game in E would lose by force.

3.2. The formal proof

The proof uses two key observations, which we formulate as Lemma 1.

Lemma 1. Let π be a Q-Res refutation of KBKFn and let ε ∈ E.

(a) Every universal variable in Un appears in π[ε].

(b) For each i ∈ [n] there exists a subassignment ε′i of ε such that the ui
literal satisfied by µε does not appear in π[ε′i].

Consideration of these two facts, in combination with the folklore proper-
ties of Q-Res refutations, leads straightforwardly to an exponential proof-size
lower bound for KBKFn. The lemma is proved afterwards.

Theorem 1. Any Q-Res refutation of KBKFn has size at least 2n.

Proof. Let n ∈ N, and let π be a Q-Res refutation of KBKFn.
Let ε ∈ E. We first show that all the literals falsified by µε appear in π[ε].

Aiming for contradiction, assume otherwise. By Lemma 1(a), each variable
in the domain Un of µε appears in π[ε]. It follows that there appears in
π[ε] some literal a satisfied by µε, with var(a) = ui, say. By Lemma 1(b),
there exist domain-disjoint assignments ε′i and ε′′i with ε = ε′i ∪ ε′′i such that
a does not appear in π[ε′i]. Then there exists some universal subclause in
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π[ε] = π[ε′i][ε
′′
i ], one of whose disjuncts is a, which is not a universal subclause

in π[ε′i]. This is in direct contradiction to Proposition 1(b).
Now, by Proposition 1(a), π[ε] is a refutation of

KBKFn[ε] = ∀Un∃Zn · kbkfn[ε] ,

a QBF whose first block is universal. Let Cε be the disjunction of the literals
falsified by µε. By Proposition 2, Cε is a subclause in π[ε]. Hence Cε is a
subclause in π, by Proposition 1(b).

If follows that {Cε : ε ∈ E} = {C : vars(C) = Un} contains 2n distinct
clauses, each of which is a subclause of some clause in π. Hence |π| ≥ 2n.

Proof of Lemma 1. For part (a), observe that the matrix kbkfn[ε] is the CNF

(b ∨ z1 ∨ · · · ∨ zn) ∧ (u1 ∨ z1) ∧ (u1 ∨ z1) ∧ · · · ∧ (un ∨ zn) ∧ (un ∨ zn) ,

where b = u if ε(xn) = 0, and b = u if ε(yn) = 0. Now, removing any pair of
clauses (ui ∨ zi), (ui ∨ zi) from the matrix of KBKFn[ε] yields a true QBF.
Hence, at least one clause from each pair must appear as an axiom in π[ε],
otherwise π[ε] would be a Q-Res refutation of a true QBF. Therefore, each
variable in Un appears in π[ε].

For part (b), let i ∈ [n], and consider the assignment ε′i defined as the
domain restriction of ε to the variable set Xi∪Yi = {x1, . . . , xi}∪{y1, . . . , yi}.
We will show that c, the ui literal falsified by µε, appears in π[ε′i]. Since
clauses do not contain complementary literals, c does not appear in π[ε′i], by
Proposition 2, and the claim (b) follows.

In the particular case i = n, we have ε′i = ε and c = b. Removing
(b ∨ z1 ∨ · · · ∨ zn) from the matrix of KBKFn[ε] yields a true QBF, hence
b appears in π[ε′i]. In the remaining case i < n, KBKFn[ε′i] is the QBF
with prefix ∀ui∃xi+1∃yi+1∀ui+1 · · · ∃xn∃yn∀un∃Zn and matrix consisting of
the clauses

(c ∨ xi+1 ∨ yi+1) ,
(xj ∨ uj ∨ xj+1 ∨ yj+1) , for i+ 1 ≤ j ≤ n− 1 ,
(yj ∨ uj ∨ xj+1 ∨ yj+1) , for i+ 1 ≤ j ≤ n− 1 ,
(xn ∨ un ∨ z1 ∨ · · · ∨ zn) ,
(yn ∨ un ∨ z1 ∨ · · · ∨ zn) ,
(ui ∨ zi) , for i ∈ [n] ,
(ui ∨ zi) , for i ∈ [n] .

It is easy to see that removing (c ∨ xi+1 ∨ yi+1) from the matrix yields a
true QBF, hence c appears in π[ε′i].
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4. Conclusion

Comparing the original formulation in [12, Theorem 3.2] with Theorem 1
we remark that the former is stated existentially: there exist QBFs that are
hard for Q-Resolution. This was a natural formulation in that paper since
the authors claimed the first lower bound for Q-Resolution. On the other
hand, 25 years later, we now already have many exponential lower bounds
for Q-Resolution (cf. [20, 21]) and our aim here was to give a simple proof of
the hardness of precisely the same formulas used in the existential statement
of [12].

In retrospect, it is quite surprising that the authors of [12] had such good
intuition on what would constitute an interesting family of QBFs, and these
KBKF formulas (and versions thereof) have since influenced research in QBF
proof complexity. For instance, they do not only provide hard instances for
Q-Resolution, but also separate Q-Resolution and QU-Resolution, for which
we provably need QBFs of unbounded quantifier complexity, a result that
was only established very recently [5].
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