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In this paper we investigate the following two questions:

Q1: Do there exist optimal proof systems for a given language L?
Q2: Do there exist complete problems for a given promise class C?

For concrete languages L (such as TAUT or SAT) and concrete promise classes C (such as NP ∩ coNP, UP,
BPP, disjoint NP-pairs etc.), these questions have been intensively studied during the last years, and a number
of characterizations have been obtained. Here we provide new characterizations for Q1 and Q2 that apply
to almost all promise classes C and languages L, thus creating a unifying framework for the study of these
practically relevant questions.

While questions Q1 and Q2 are left open by our results, we show that they receive affirmative answers when
a small amount of advice is available in the underlying machine model. For promise classes with promise
condition in coNP, the advice can replaced by a tally NP-oracle.
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1 Introduction

A general proof system in the sense of Cook and Reckhow [CR79] can be understood as a nondeterministic
guess-and-verify algorithm. The question whether there exist optimal or p-optimal proof systems essentially asks
whether there exists a best such verification procedure. For practical purposes, such an optimal proof system
would be extremely useful, as both the search for good verification algorithms as well as the quest for lower
bounds to the proof size could concentrate on the optimal system. Thus the following question is of great signifi-
cance:

Q1: Do there exist (p-)optimal proof systems for a given language L?

Posed by Krajı́ček and Pudlák [KP89], this question has remained unresolved for more than twenty years. Under-
standing question Q1 better through characterizations is an important problem with consequences to seemingly
unrelated areas such as descriptive complexity: very recently, Chen and Flum [CF10] have shown the equivalence
of Q1 to the open problem whether L≤ is a P-bounded logic for P. Other recent research concentrated on modi-
fied versions of Q1, where a number of surprising positive results have been obtained. Cook and Krajı́ček [CK07]
have shown that optimal propositional proof systems exist under non-uniform information (advice), and even one
bit of advice suffices. In another direction, Hirsch and Itsykson considered randomized proof systems and showed
the existence of an optimal system in the class of all automatizable heuristic proof systems [HI10, Hir10]. Still
another positive result was very recently obtained by Pitassi and Santhanam [PS10] who show that there exists
an optimal quantified propositional proof system under a weak notion of simulation.

For the original problem Q1, sufficient conditions were established by Krajı́ček and Pudlák [KP89] by NE =
coNE for the existence of optimal and E = NE for p-optimal propositional proof systems, and these conditions
were subsequently weakened by Köbler, Messner, and Torán [KMT03]. Necessary conditions for a positive
answer to Q1 are tightly linked to the following analogue of Q1 for promise complexity classes lacking an easy
syntactic machine model:
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and SYNASC 2009 [Bey09]. Research was supported in part by DFG grant KO 1053/5-2.
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Q2: Do there exist complete problems for a given promise class C?

Like the first question also Q2 has a long research record, dating back to the 80’s when Kowalczyk [Kow84]
and Hartmanis and Hemachandra [HH88] considered this question for NP∩ coNP and UP. This research agenda
continues to recent days where, due to cryptographic and proof-theoretic applications, disjoint NP-pairs have been
intensively studied (cf. [GSS05,GSSZ04,GSZ07,Bey07] and [GSZ06] for a survey). Very recently, Itsykson has
shown the surprising result that AvgBPP, the average-case version of BPP, has a complete problem [Its09].

As many computational tasks are formulated as function problems [Sel96], it is also interesting to extend Q2
to function classes. In this formulation Q1 becomes a special case of Q2 because all proof systems for a given
language can be understood as a promise function class in which complete functions correspond to p-optimal
proof systems. In fact, Köbler, Messner, and Torán [KMT03] have shown that, with respect to Q2, proof systems
provide the most difficult instances among all promise classes, i.e., a positive answer to Q1 implies a positive
answer for Q2 for many choices of L and C.

In the present paper we continue this line of research. While Köbler, Messner, and Torán [KMT03] focused
on the implication Q1⇒ Q2, we provide new characterizations for both Q1 and Q2. In fact, from these charac-
terizations we can also easily read off the implication Q1⇒ Q2 (under suitable assumptions), thus in addition,
we provide alternative proofs for some results of [KMT03]. Köbler, Messner, and Torán used the notion of a test
set to measure the complexity of the promise. Here we pursue a different but related approach by representing
the promise in a language L and then using a proof system for L to verify the promise. On the propositional
level, such representations have been successfully used to express the consistency of propositional proof systems
(known as the reflection principle, cf. [Coo75,KP89]) or the disjointness of NP-pairs [KP98,Bey07,Bey08]. We
create a unifying framework which generalizes these methods to arbitrary languages.

We will now describe in more detail our results and the organization of the paper. After developing the notion
of representations in Sections 2 and 3 we examine Q1 in Section 4 where we prove that a language L has a
p-optimal proof system if and only if all polynomial-time computable subsets of L are recursively enumerable. A
similar characterization also holds for the existence of optimal proof systems. This widely generalizes previous
results from [Sad02] for propositional proof systems and provides interesting characterizations for a number of
applications like the graph isomorphism and automorphism problems.

In Section 5 we proceed with question Q2 where we discuss a characterization of Q2 in terms of uniform
enumerations of promise obeying machines. Section 6 then contains our results on the connections between Q1
and Q2. We show that, under suitable assumptions, a promise class C has complete problems if and only if there
exists a proof system for some language L in which C is representable. This also yields a general method to show
the equivalence of reductions of varying strength with respect to Q2. In addition, we obtain that L has a p-optimal
proof system if and only if every promise class expressible in L has a complete set or function. Different versions
of these results hold for both optimality and p-optimality. We also apply these general theorems to concrete
promise classes like UP, NP ∩ coNP, and disjoint NP-pairs.

In Section 7 we show that the relation between proof systems and promise classes also holds in the presence
of advice. Employing recent advances of Cook and Krajı́ček [CK07] who show that optimal propositional proof
systems exist which use only one bit of advice, we obtain hard sets for a large number of promise classes when
advice is available. In Section 8 we replace the advice by a very weak oracle and show that promise classes with
a coNP-promise (such as disjoint NP-pairs) admit a hard set under a tally NP-oracle. We conclude in Section 9
with a discussion on the status of Q1 and Q2 and future directions for research.

2 Preliminaries

We assume basic familiarity with complexity classes (cf. [BDG88]). Our basic model of computation are
polynomial-time Turing machines and transducers. Tacitly we assume these machines to be suitably encoded
by strings. We also assume that they always have a polynomial-time clock attached bounding their running time
such that this running time is easy to detect from the code of the machine.

For a language L and a complexity class C, the set of all C-easy subsets of L consists of all sets A ⊆ L
with A ∈ C. A class C of languages has a recursive P-presentation (resp. NP-presentation) if there exists a
recursively enumerable list N1, N2, . . . of (non-)deterministic polynomial-time clocked Turing machines such
that L(Ni) ∈ C for i ∈ ℕ, and, conversely, for each A ∈ C there exists an index i with A ⊆ L(Ni). We remark
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that this definition is useful for classes C that do not contain the set of all words (otherwise there always exists
the trivial P-presentation N,N,N, . . . where N accepts all inputs). In this definition, it would also be natural to
replace A ⊆ L(Ni) by the stronger requirement A = L(Ni), but the weaker concept suffices for our purpose.

2.1 Proof Systems

Cook and Reckhow [CR79] defined the notion of a proof system for a language L quite generally as a polynomial-
time computable function f with range L. A stringw with f(w) = x is called an f -proof for x ∈ L. By f ⊢≤m x
we indicate that x has an f -proof of size ≤ m. For a subset A ⊆ L we write f ⊢∗ A if there is a polynomial p
such that f ⊢≤p(∣x∣) x for all x ∈ A.

Proof systems are compared by simulations [CR79, KP89]. If f and g are proof systems for L, we say that g
simulates f (denoted f ≤ g), if there exists a polynomial p such that for all x ∈ L and f -proofs w of x there is
a g-proof w′ of x with ∣w′∣ ≤ p (∣w∣). If such a proof w′ can even be computed from w in polynomial time, we
say that g p-simulates f (denoted f ≤p g). A proof system for L is called (p-)optimal if it (p-)simulates all proof
systems for L.

2.2 Promise Classes

Following the approach of Köbler, Messner, and Torán [KMT03], we define promise classes in a very general
way. A promiseR is described as a binary predicate between nondeterministic polynomial-time Turing machines
N and strings x, i.e., R(N, x) means that N obeys promise R on input x. A machine N is called an R-machine
if N obeys R on any input x ∈ Σ∗. Given a promise predicate R, we define the language class CR = {L(N) ∣
N is an R-machine } and call it the promise class generated by R. Instead of R-machines we will also speak of
CR-machines. Similarly, we define function promise classes by replacing L(N) by the function computed by N
(cf. [KMT03]). For functions we use the following variant of many-one reductions (cf. [KMT03]): f ≤ g if there
exists a polynomial-time computable function t such that f(x) = g(t(x)) for all x in the domain of f .

In this general framework it is natural to impose further restrictions on promise classes. One assumption
which we will make throughout the paper is the presence of universal machines, i.e., we only consider promise
conditions R such that there exists a universal machine UR which, given an R-machine N , input x, and time
bound 0m, efficiently simulates N(x) for m steps such that UR obeys promise R on ⟨N, x, 0m⟩.

Occasionally, we will need that C-machines can perform nondeterministic polynomial-time computations
without violating the promise. We make this precise via the following notion from [KMT03]: for a complexity
class A and a promise class C defined via promiseR, we say that A-assertions are useful for C if for any language
A ∈ A and any nondeterministic polynomial-time Turing machine N the following holds: if N obeys promise R
on any x ∈ A, then there exists a language C ∈ C such that C ∩A = L(N)∩A. A similar definition also applies
for function classes. Namely, A-assertions are useful for a function class C if for any language A ∈ A and any
polynomial-time clocked Turing transducer N it holds: if N obeys promise R on any input x ∈ A, then there
exists a function f ∈ C such that N(x) = f(x) for any x ∈ A. Throughout this paper we will only consider
promise classes C for which P-assertions are useful. If also NP-assertions are useful for C, then we say that C
can use nondeterminism.

The set of all proof systems for a language L is an example for a promise function class, where the promise
for a given function f is rng(f) = L. We define a larger class PS (L) where we only concentrate on correctness
but not on completeness of proof systems. This is made precise in the following definition.

Definition 2.1 For a language L, the promise function class PS (L) contains all polynomial-time computable
functions f with rng(f) ⊆ L.

3 Representations

In order to verify a promise, we need appropriate encodings of promise conditions. In the next definition we
explain how a promise condition for a machine can be expressed in an arbitrary language.

Definition 3.1 A promise R is expressible in a language L if there exists a polynomial-time computable
function corr : Σ∗ × Σ∗ × 0∗ → Σ∗ such that the following conditions hold:
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1. Correctness: For every (encoding of a) polynomial-time clocked Turing machine N , for every x ∈ Σ∗ and
m ∈ ℕ, if corr(x,N, 0m) ∈ L, then N obeys promise R on input x.

2. Completeness: For every R-machine N , the set

Correct(N) = {corr(x,N, 0p(∣x∣)) ∣ x ∈ Σ∗ }

is a subset of L, where p is the polynomial time bound (the clock) inscribed in N .

3. Local recognizability: For every fixed polynomial-time clocked Turing machine N , the set Correct(N) is
polynomial-time decidable.

We say that the promise class C generated by R is expressible in L if R is expressible in L. If the elements
corr(x,N, 0m) only depend on ∣x∣, N , and m, but not on x, we say that C is expressible in L by a length-
depending promise.

This definition applies to both language and function promise classes. One of the most important applications
for the above concept of expressibility is to choose L as the set of propositional tautologies TAUT. Expressing
promise conditions by propositional tautologies is a well known approach with a long history. For propositional
proof systems, leading to the promise function class PS (TAUT), propositional expressions are constructed via
the reflection principle of the proof system (cf. [Coo75,KP89]). Propositional expressions have also been used for
other promise classes like disjoint NP-pairs and its generalizations [Bey07,BKM09]. Typically, these expressions
are even length depending. We remark that Köbler, Messner, and Torán [KMT03] have used a related approach,
namely the notion of a test set, to measure the complexity of promise conditions.

As a first example, consider the set of all P-easy subsets of a language L. The next lemma shows that this
promise class is always expressible in L.

Lemma 3.2 For every language L, the P-easy subsets of L are expressible in L.

P r o o f. Fix an element x0 ∕∈ L. Then we define the function corr(x,N, 0m) as

corr(x,N, 0m) =

{
x if N(x) accepts in ≤ m steps
x0 otherwise.

Using expressibility of a promise class in a language L, we can verify the promise for a given machine with
the help of short proofs in some proof system for L. This leads to the following concept:

Definition 3.3 Let C be a promise class which is expressible in a language L. Let further A be a language
from C and P be a proof system for L. We say that A is representable in P if there exists a C-machine N for
A such that P ⊢∗ Correct(N). If these P -proofs of corr(x,N, 0p(∣x∣)) can even be constructed from input x in
polynomial time, then we say that A is p-representable in P .

Furthermore, if every language A ∈ C is (p-)representable in P , then we say that C is (p-)representable in P .
Intuitively, representability of A in P means that we have short P -proofs of the promise condition of A (with

respect to some C-machine for A). Given a proof system P for L and a promise class C which is expressible
in L, it makes sense to consider the subclass of all languages or functions from C which are representable in P .
This leads to the following definition:

Definition 3.4 For a promise class C expressible in a language L and a proof system P for L, let C(P ) denote
the class of all A ∈ C which are representable in P .

Note that for each A ∈ C there exists some proof system P for L such that A ∈ C(P ), but in general C(P )
will be a strict subclass of C which enlarges for stronger proof systems. It is, of course, interesting to ask whether
these subclasses C(P ) have sufficiently good properties. In particular, it is desirable that C(P ) is closed under
reductions. Therefore, we make the following definition:

Definition 3.5 A promise class C is provably closed under a reduction ≤R in L if C is expressible in L and
for each proof system P for L there exists a proof system P ′ for L such that P ≤ P ′ and for all A ∈ C and
B ∈ C(P ′), A ≤R B implies A ∈ C(P ′).
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We remark that provable closure of C under ≤R is a rather weak notion as it does not even imply closure of C
under ≤R in the ordinary sense (because of the restriction A ∈ C). Also we do not require each subclass C(P ) to
be closed under ≤R, but that for each proof system P this holds for some stronger system P ′. This is a sensible
requirement, because proof systems for L can be defined quite arbitrarily, and closure of C(P ) typically requires
additional assumptions on P (cf. [Bey07] where provable closure of the class of disjoint NP-pairs under different
reductions is shown). In fact, it is not difficult to construct counterexamples:

Proposition 3.6 Let C be a promise class which is expressible in a language L and let ≤R be a reduction for
C. Let further P be a proof system for L such that there exist A,B ∈ C ∖ C(P ) with A ≤R B. Then there exists
a proof system P ′ ≥ P such that C(P ′) is not closed under ≤R.

P r o o f. Under the hypotheses of the proposition, we construct the proof system P ′ as follows. We choose a
C-machine N for B and define

P ′(y) =

⎧⎨⎩
x if y = 0x and x ∈ Correct(N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. As P ′ ⊢∗ Correct(N) we have C(P ′) = C(P ) ∪ {B}. In particular, A is
not contained in C(P ′), but B ∈ C(P ′) and A ≤R B. Therefore C(P ′) is not closed under ≤R.

4 Optimal Proof Systems and Easy Subsets

In this section we search for characterizations for the existence of optimal or even p-optimal proof systems for
arbitrary languages L (Question Q1) and apply these results to concrete choices for L. We start with a criterion
for the existence of p-optimal proof systems.

Theorem 4.1 Let L be a language such that PS (L) is expressible in L. Then L has a p-optimal proof system
if and only if the P-easy subsets of L have a recursive P-presentation.

P r o o f. Let f be a p-optimal proof system for L and let A be a polynomial-time computable subset of L. We
can define a proof system fA for L as follows:

fA(x) =

⎧⎨⎩
f(y) if x = 0y

a if x = 1a and a ∈ A
b otherwise

where b is a fixed element in L. Because f is p-optimal, fA is p-simulated by f via some polynomial-time
computable function tA.

As this can be done for all P-easy subsets A of L, we get a recursive P-presentation of L as follows. Let
(ti)i∈ℕ be an enumeration of all deterministic polynomial-time clocked Turing transducers. For i ∈ ℕ consider
the following set of algorithms Mi:

1 Input: x
2 IF f(ti(1x)) = x THEN accept ELSE reject

Apparently, these algorithms Mi can be computed by deterministic polynomial-time Turing machines. Further,
each Mi only accepts inputs from L because if Mi accepts x, then we have an f -proof for x.

Now for each P-easy subset A of L, some machine computing the above function tA appears in the enumera-
tion ti, and therefore A is accepted by Mi for the appropriate index i such that ti computes tA. Therefore Mi is
a recursive P-presentation of the class of all P-easy subsets of L.

For the converse direction, let (Mi)i∈ℕ be a recursive P-presentation of the P-easy subsets of L. We construct
a p-optimal proof system Popt for L as follows. Inputs for Popt are tuples

⟨�, P, 0m, i, 0n⟩ .
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On such an input, Popt first checks whether P is the encoding of a Turing transducer with a polynomial-time
bound attached. If this is not the case, then Popt outputs some fixed element x0 ∈ L. Otherwise, Popt spends n
steps to compute the machine Mi from the enumeration M1,M2 . . . If n steps do not suffice to construct Mi, we
output again x0 ∈ L. Otherwise, Popt computes corr(�, P, 0m) and checks whether Mi accepts corr(�, P, 0m)
in n steps. Again, if Mi does not stop in ≤ n steps, then we output x0. If P and � pass the test, then Popt

simulates P on input � and outputs P (�).
Apparently, Popt can be computed in polynomial time. For each Turing transducer N with running time p and

each input x with N(x) ∈ L, the element corr(x,N, 0p(∣x∣)) is contained in some polynomial-time computable
subset of L. Therefore, Popt is a proof system for L, because by the correctness and completeness conditions
from Definition 3.1, the range of Popt is exactly L.

To prove the p-optimality of Popt , let P be a proof system for L. Because by assumption PS (L) is expressible
in L, the set Correct(P ) is a P-easy subset of L (by the local recognizability condition from Definition 3.1).
Hence there exists an index i such thatMi decides Correct(P ). Let c be a constant such thatMi can be computed
from i in time c and let p and q be polynomial time bounds for P and Mi, respectively. Then P is easily seen to
be p-simulated by

� 7→ ⟨�, P, 0p(∣�∣), i, 0q(∣corr(�,P,0
p(∣�∣))∣)+c⟩

which completes the proof.

By a similar argument we can provide two characterizations for the existence of optimal proof systems.
Theorem 4.2 Let L be a language such that PS (L) is expressible in L. Then the following conditions are

equivalent:

1. There exists an optimal proof system for L.

2. The NP-easy subsets of L have a recursive NP-presentation.

3. The P-easy subsets of L have a recursive NP-presentation.

Given these general results, it is interesting to ask for which languages L the set PS (L) of all proof systems
for L is expressible in L. Our next lemma provides sufficient conditions:

Lemma 4.3 Let L be a language fulfilling the following two conditions:

1. Natural numbers can be encoded by elements of L, i.e., there exists an injective function Num : ℕ → L
which is both computable and invertible in polynomial time.

2. L possesses an AND-function, i.e., there exists a function AND : Σ∗×Σ∗ → Σ∗ which is both polynomial-
time computable and polynomial-time invertible such that for all x, y ∈ Σ∗, AND(x, y) ∈ L if and only if
x ∈ L and y ∈ L.

Then PS (L) is expressible in L.

P r o o f. We have to define the function corr according to Definition 3.1. Given a string x, an encoding of a
polynomial-time computable Turing transducer N , and a number m ∈ ℕ, we first simulate N(x) for ≤ m steps.
Let y be the output of N(x), if the simulation succeeded. Otherwise, we choose a fixed string y ∕∈ L.

Next we interpret the binary encoding of N as a natural number (which we again denote by N ) and compute
Num(N). We then define the function corr as

corr(x,N, 0m) = AND(y,AND(Num(N),Num(m))) .

Clearly, corr is polynomial-time computable. To verify the conditions of Definition 3.1 for corr , we ob-
serve that correctness and completeness of corr follow because the string w := AND(Num(N),Num(m)) is
contained in L for all N,m ∈ ℕ, and therefore AND(y, w) ∈ L if and only if y ∈ L.

Local recognizability for corr follows as AND and Num are invertible in polynomial time and therefore for
each polynomial-time Turing transducer N , the set Correct(N) is in P.
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Using this lemma we can show L-expressibility of PS (L) for many interesting choices of L:
Proposition 4.4 For any of the following languages L, the set PS (L) is expressible in L:

∙ SATi for i ∈ ℕ (the satisfiability problem for quantified propositional formulas with i quantifier alterna-
tions, starting with existential quantifiers),

∙ TAUTi for i ∈ ℕ (quantified propositional tautologies with i quantifier alternations, starting with universal
quantifiers),

∙ QBF (quantified propositional tautologies),

∙ the graph isomorphism problem GI, its complement GI, and the complement GA of the graph automorphism
problem.

P r o o f. We have to check the conditions from the previous lemma. For languages consisting of formulas like
SATi, TAUTi, or QBF, the AND-function is provided by the Boolean connective ∧. The function Num can be
defined for example by

n 7→ (pn⌈logn+1⌉ ∨ ¬pn⌈logn+1⌉) ∧ ⋅ ⋅ ⋅ ∧ (pn1
∨ ¬pn1

) ,

where p0, p1 are fixed propositional variables and n⌈logn+1⌉ . . . n1 are the bits of the binary representation of n.
For GI, Num(n) can be implemented by pairs (Ki,Ki) of cliques of size i which indicate the positions i

where the binary representation of n contains a 1. For GI we take (Ki,Ki+1), and for GA we take an easy rigid
graphs with i vertices. It is well known that GI has an AND-function (cf. [KST93]). For the AND-functions of
GI and GA we can take the OR-functions of GI and GA (cf. [KST93]).

For GI, which like any problem in NP has an optimal proof system, we obtain the following characterization
on the existence of a p-optimal proof system.

Corollary 4.5 GI has a p-optimal proof system if and only if there exists a recursive P-presentation of all
polynomial-time computable subsets of GI.

Let us remark that in Lemma 4.3, instead of an AND-function we could also use a padding function for L. In
this way we obtain a similar result as Corollary 4.5 for GA (which is not known to possess an AND-function).

5 Complete Sets and Enumerations

In this section we consider the question Q2, asking whether language or function promise classes have complete
sets or functions. There is a long history of equating complete sets and recursive enumerations of machines. The
following result essentially stems from [KMT03], but particular cases of the theorem have been been previously
obtained, namely for NP ∩ coNP by Kowalczyk [Kow84], for UP by Hartmanis and Hemachandra [HH88], and,
more recently, for disjoint NP-pairs by Glaßer, Selman, and Sengupta [GSS05]. We just formulate the theorem
for language classes, but a similar result also holds for promise function classes. The theorem is already included
in [KMT03], but for the benefit of the reader we include a full proof (our argument is more direct than the proof
given in [KMT03]).

Theorem 5.1 (Köbler, Messner, Torán [KMT03]) Let C be a promise class which is closed under many-one
reductions. Then C has a many-one complete problem if and only if there exists a recursive enumeration (Ni)i≥1
of polynomial-time clocked Turing machines such that C = {L(Ni) ∣ i ≥ 1} (a uniform enumeration of C).

P r o o f. For the proof of the forward implication, let AC be a many-one complete problem for C and let
M be a C-machine for AC. We fix an enumeration N1, N2, . . . of all polynomial-time Turing transducers (by
our convention from Section 2 all Turing transducers are clocked). By assumption, the class C is closed under
many-one reductions, and hence (M ∘Ni)i≥1 is a uniform enumeration of C.

For the converse implication, let f be a recursive function computing an enumeration (Ni)i∈ℕ of C-machines
such that C = {L(Ni) ∣ i ≥ 1}. We construct a many-one complete problem AC for C as follows: elements of
AC are of the form

⟨x, i, 0m⟩ .
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On such an input, AC first simulates f on input i for at most m steps. If this simulation does not terminate, then
we reject. Otherwise, f(i) is guaranteed to output a C-machine Ni. Now we simulate this machine Ni on input
x for at most m steps. Again, if the simulation does not stop, we reject. Otherwise, AC answers according to the
answer obtained in the simulation of Ni(x).

By our general assumption on promise classes we have a universal C-machine, and therefore AC ∈ C. To
prove the hardness of AC for C, let A ∈ C. Then there exists a C-machine Ni in the enumeration computed by f
such that Ni accepts A. Let p be a polynomial bounding the running time of Ni and let c be the time that f(i)
spends to compute Ni. Then the polynomial-time computable function

x 7→ ⟨x, i, 0p(∣x∣)+c⟩

many-one reduces A to AC.

Let us note that in the proof of the forward implication of Theorem 5.1, the hypothesis that C is closed
under many-one reductions seems indeed crucial. Namely, if C consists of all P-easy subsets of TAUT, then
C trivially contains a many-one complete set. On the other hand, a recursive enumeration of C-machines as
in Theorem 5.1 is rather unlikely to exist, as this would imply the existence of a p-optimal propositional proof
system by Theorem 4.1. But of course, the P-easy subsets of TAUT are not closed under many-one reductions.

6 Optimal Proof Systems and Complete Sets

Now we are ready to analyse the relations between our central questions Q1 and Q2 on the existence of optimal
proof systems for languages L and the existence of complete sets for promise classes C. While Köbler, Messner,
and Torán [KMT03] have shown that for many natural choices of L and C, a positive answer to Q1 implies a
positive answer to Q2, we will provide here a number of characterizations involving both questions. In particular,
these characterizations will also yield the above mentioned relation between Q1 and Q2 for concrete applications.

Our first result characterizes the existence of complete sets for a promise class C by the representability of C
in a proof system.

Theorem 6.1 Let C be a promise language (or function) class which can use nondeterminism and let L be
a language such that C is provably closed under many-one reductions in L. Then C has a many-one complete
language (or function) if and only if there exists a proof system for L in which C is representable.

P r o o f. For the proof of the forward implication, let C be a promise complexity class with a many-one
complete language A. Let L be a language such that C is provably closed under reductions in L. Let P be
an arbitrary proof system for L and let N be a C-machine for A. We construct a proof system P ′ with A ∈ C(P ′)
as follows:

P ′(y) =

⎧⎨⎩
x if y = 0x and x ∈ Correct(N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. Because C is provably closed under reductions in L, there exists a proof
system P ′′ for L such that C(P ′′) is closed under many-one reductions. As A ∈ C(P ′′) and A is many-one
complete for C, it follows that C(P ′′) = C.

For the proof of the converse implication, let P be a proof system for L in which every language A ∈ C is
representable. We construct a complete set AC for C by specifying a C-machine MA accepting AC. Elements of
AC are of the form

⟨x,N, 0m, 0n⟩ .

On such inputs MA performs the following operations. MA guesses a string � ∈ Σ≤n and checks whether
P (�) = corr(x,N, 0m). At this point we need that C can use nondeterminism. If this test fails, then MA rejects
the input. Otherwise, MA simulates the machine N on input x for m steps and answers according to the answer
obtained in this simulation. If the simulation does not terminate in m steps, MA rejects the input.
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Because C can use nondeterminism and has a universal machine, MA is a C-machine and hence AC ∈ C. To
verify the hardness of AC for C, let A be a language from C. Because A is representable in P , there exists a
C-machine N accepting A such that P ⊢∗ Correct(N). Let p and q be polynomials bounding the running time
of N and the proof size of Correct(N) in P , respectively. Then the polynomial-time computable function

x 7→ ⟨x,N, 0p(∣x∣), 0q(∣corr(x,N,0
p(∣x∣))∣)⟩

many-one reduces A to AC.

Without making the assumption that the promise classes can use nondeterminism we obtain the following
result:

Theorem 6.2 Let C be a promise language (or function) class which is closed under many-one reductions and
let L be a language such that C is expressible in L. Then C has a many-one complete language (or function) if
and only if L has a proof system in which C is p-representable.

P r o o f. For the forward direction, assume that C has a many-one complete language (or function). It follows
from Theorem 5.1 that C has a uniform enumeration (Ni)i∈ℕ of C-machines with polynomial running times pNi .
Let G be a Turing machine generating the codes of the machines N1, N2, . . .

We say that a string v ∈ Σ∗ is in good form if

v = ⟨wG , x, 0
pNi (∣x∣)⟩

where x ∈ Σ∗ and wG is a computation of the machine G eventually producing the code of the C-machine Ni.
Apparently, we can check in polynomial time whether a given string is in good form.

We define g : Σ∗ → L in the following way. If v = ⟨wG , x, 0
pNi (∣x∣)⟩ is in good form, then g(v) =

corr(x,Ni, 0
pNi (∣x∣)) (where Ni is the machine produced by G during the computation wG ), otherwise g(v) =

x0, where x0 is a certain fixed string from L.
This polynomial-time computable function can be extended to a proof system P for L in which C is p-

representable. Let P ′ be any proof system for L (L is recursively enumerable). We define the proof system
P as follows:

P (y) =

{
g(v) if y = 0v

P ′(v) if y = 1v.

Let A be any language from C. There exists a machine Ni from the uniform enumeration of the class C such that
L(Ni) = A, and pNi is its polynomial-time bound. Let wG be the computation of G producing the code of the
machine Ni. The function �(x) = 0⟨wG , x, 0

pNi (∣x∣)⟩ produces P -proofs of Correct(Ni) in polynomial-time in
∣x∣.

For the converse direction, assume that there exists a proof system P for L such that C is p-representable in it.
Let R be the promise condition for C. Consider the language

AC = {⟨x,N, 0pN (∣x∣),w⟩ ∣ x ∈ L(N), P (w) = corr(x,N, 0pN (∣x∣))}

where N is a nondeterministic Turing machine with polynomial time bound pN (the clock) and w is a P -proof
of corr(x,N, 0pN (∣x∣)). We claim that AC is the desired C-complete language.

Let us first argue that AC ∈ C. We say that a string v is in good form if and only if v = ⟨x,N, 0pN (∣x∣),w⟩
and P (w) = corr(x,N, 0pN (∣x∣)), where x, N , pN , and w mean the same as above. Let us notice that if v is in
good form, then corr(x,N, 0pN (∣x∣)) ∈ L. From the correctness condition it follows that N obeys promise R on
input x.

There exists a polynomial-time Turing machine V which verifies whether a given input string v is in good
form. By our general assumption on promise classes we have also a universal machine U with respect to the
promise R. Using the machines V and U we can construct an R-machine K accepting AC. The machine K, first
runs V on input v, checking if v is in good form. If this test fails, then K rejects v, otherwise K runs U on input
⟨N, x, 0pN (∣x∣)⟩. Since U is a universal machine for C, the machine K is an R-machine.
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10 O. Beyersdorff and Z. Sadowski: Do There Exist Complete Sets for Promise Classes?

To prove hardness of AC for C, let A be any language in C. Since A is p-representable in P , there exists a
C-machine N such that L(N) = A, and the P -proofs of Correct(N) can be constructed in polynomial time in
∣x∣. The function f : Σ∗ → Σ∗ defined by

f(x) = ⟨x,N, 0pN (∣x∣),w⟩

performs a polynomial-time many-one reduction from A to AC. The string w from the definition of f is the
P -proof of corr(x,N, 0pN (∣x∣)).

Let us mention some applications of this result. The promise class DisjNP of disjoint NP-pairs and the class
UP are expressible in TAUT, and the class NP∩coNP is expressible in QBF (cf. [Bey07,KMT03,Sad97,Sad08]).
Hence we obtain the following corollary exemplifying our theorem.

Corollary 6.3

1. Complete disjoint NP-pairs exist if and only if TAUT has a proof system in which DisjNP is p-representable
(if and only if TAUT has a proof system in which DisjNP is representable).

2. UP has a complete language if and only if TAUT has a proof system in which UP is p-representable.

3. NP ∩ coNP has a complete language if and only if QBF has a proof system in which NP ∩ coNP is p-
representable.

Theorem 6.1 also allows to derive results which show that the question of the existence of complete problems
for C does not depend on the strength of the underlying reduction. This can be done as in the following corollary:

Corollary 6.4 Let ≤ and ≤′ be two reductions which are refined by many-one reductions. Assume further
that C can use nondeterminism and is both provably closed under ≤ and ≤′ in some language L. Then C has a
≤-complete problem if and only if C has a ≤′-complete problem.

P r o o f. It suffices to show that C contains a many-one complete problem if and only if C contains a ≤-
complete problem. The forward implication is clear as ≤ is refined by many-one reductions.

Conversely, if C has a ≤-complete problem and C is provably closed in L under ≤, then we obtain a proof
system P for L with C(P ) = C as in the proof of the forward implication of Theorem 6.1. Now the converse
implication of Theorem 6.1 together with the assumption that C can use nondeterminism gives us a many-one
complete problem for C.

In this way it can be shown, for example, that the question of the existence of complete disjoint NP-pairs
is equivalent for reductions ranging from strong many-one reductions to smart Turing reductions (cf. [GSS05,
Bey07]).

Our next result shows that question Q1 on the existence of p-optimal proof systems for a language L can
be characterized by a “universally quantified” version of the condition from Theorem 6.2. Further, Q1 is even
equivalent to the existence of complete sets for all promise classes representable in L:

Theorem 6.5 Let L be a language such that PS (L) is expressible in L. Then the following conditions are
equivalent:

1. There exists a p-optimal proof system for L.

2. There exists a proof system for L in which any promise class which is expressible in L is p-representable.

3. There exists a proof system for L in which the class of all P-easy subsets of L is p-representable.

4. Every promise language and function class which is expressible in L has a many-one complete language or
function.
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P r o o f. The proof is structured into the implications 1⇒ 2⇒ 3⇒ 1 and 2⇒ 4⇒ 1.
For the proof of the direction 1⇒ 2, let P be a p-optimal proof system for L and let A be a language from C.

We choose a C-machine N accepting A. Because C is expressible in L, the set Correct(N) is a polynomial-time
decidable subset of L. Therefore we can devise a proof system PA with polynomial-size proofs of Correct(N)
as follows:

PA(y) =

⎧⎨⎩
x if y = 0x and x ∈ Correct(N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. Apparently, PA is a proof system for L such that PA-proofs of Correct(N)
can be constructed in polynomial time, i.e., A is p-representable in PA. By the p-optimality of P we infer
PA ≤p P . Thus PA-proofs of Correct(N) can be efficiently translated into P -proofs of these formulas and
therefore A is also p-representable in P .

Implication 2⇒ 3 holds because by Lemma 3.2, the P-easy subsets of L are expressible in L.
For the proof of 3⇒ 1 we show that item 3 yields a recursive P-presentation of all P-easy subsets of L. As

both Theorem 4.1 and Theorem 6.5 use the assumption of expressibility of PS (L) in L, we obtain a p-optimal
proof system for L by Theorem 4.1.

For this let P be a proof system for L in which all P-easy subsets of L are p-representable. Let (ti)i∈ℕ
be an enumeration of all deterministic polynomial-time clocked Turing transducers and let (Ni, qi)i∈ℕ be an
enumeration of all deterministic polynomial-time clocked Turing machines with their respective running times.
The machines Ni will be candidates for machines accepting P-easy subsets of L where the promise condition
Reasy for Ni is L(Ni) ⊆ L. Finally, let ⟨⋅, ⋅⟩ be a polynomial-time computable and polynomial-time invertible
bijective pairing function on ℕ.

Now, for i ∈ ℕ, consider the following set of algorithms Mi:

1 Input: x
2 compute numbers j and k with i = ⟨j, k⟩
3 compute Nj, qj, and tk
4 IF P (tk(x)) ∕= corr(x,Nj , 0

qj(∣x∣)) THEN reject
5 ELSE
6 IF Nj(x) accepts in ≤ qj(∣x∣) steps THEN accept
7 ELSE reject

Apparently, these algorithms Mi can be computed in deterministic polynomial time. Further, each Mi only
accepts inputs from L because ifMi accepts x, then we have an f -proof for corr(x,Nj , 0

qj(∣x∣)), confirming that
Nj obeys promise Reasy on x, i.e., x ∈ L.

On the other hand, each P-easy subset A ⊆ L is p-representable in P with respect to some machine Nj and
some transducer tk computing the P -proofs of corr(x,Nj , 0

qj(∣x∣)) from input x. For i = ⟨j, k⟩ we then have
L(Mi) = A. Thence Mi is a recursive P-presentation of all P-easy subsets of L.

For the direction 2⇒ 4, let C be a promise class which is expressible in L. By item 2 we have a proof system
P for L in which every language A ∈ C is p-representable. We will construct a complete set AC for C as follows.
If C is a language class, then AC will be a many-one complete language for C, and if C is a function promise
class, then AC will be a many-one complete function for C. Elements of AC are of the form

⟨x,N, 0m,M, 0n⟩ .

On such inputs the C-machine MA for AC performs the following operations. MA computes in polynomial time
the string corr(x,N, 0m). It then simulates the Turing transducer M on input x for at most n steps. If the
simulation does not terminate, then MA rejects (in case of a language class C) or outputs a fixed element (for a
function class C).

Otherwise, let � be the output of the simulation M(x). Next MA checks whether P (�) = corr(x,N, 0m).
If this test fails, then again MA rejects the input (or outputs some fixed element). Otherwise, MA simulates the
machine N on input x for m steps and answers according to the answer obtained in this simulation.
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12 O. Beyersdorff and Z. Sadowski: Do There Exist Complete Sets for Promise Classes?

By our general assumption, C has a universal machine and can perform polynomial-time computations. There-
fore MA is a C-machine and thus AC ∈ C. To verify the hardness of AC for C, let A be a language (or function)
from C. Because A is p-representable in P , there exists a C-machine N accepting A such that P -proofs of
Correct(N) can be efficiently constructed. Let p be the running time of N and let M be a Turing transducer
with polynomial running time q that computes P -proofs of Correct(N) from input x. Then the polynomial-time
computable function

x 7→ ⟨x,N, 0p(∣x∣),M, 0q(∣x∣)⟩

many-one reduces A to AC.
For the final implication 4⇒ 1 we need the assumption of the expressibility of PS (L) in L. Because PS (L) is

a promise function class, item 4 together with this assumption guarantees the existence of a many-one complete
function for PS (L), which coincides with the notion of a p-optimal proof system for L.

The next theorem contains a similar statement for optimal proof systems.

Theorem 6.6 Let L be a language such that PS (L) is expressible in L. Then the following conditions are
equivalent:

1. There exists an optimal proof system for L.

2. L has a proof system P such that every promise class which is expressible in L is representable in the system
P .

3. L has a proof system in which all P-easy subsets of L are representable.

P r o o f. The proof of the direction 1⇒ 2 proceeds similarly as the proof of 1⇒ 2 in Theorem 6.5. Let P be
an optimal proof system for L and let A be a language from C. We choose a C-machine N accepting A. Because
C is expressible in L, the set Correct(N) is a polynomial-time subset of L. We construct a proof system PA with
polynomial-size proofs of Correct(N) as follows:

PA(y) =

⎧⎨⎩
x if y = 0x and x ∈ Correct(N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. Apparently, PA is a proof system for L with PA ⊢∗ Correct(N). By the
optimality of P we infer PA ≤ P . Thus also P ⊢∗ Correct(N) holds, i.e., A is representable in P .

As in the previous proof, implication 2 ⇒ 3 holds because the P-easy subsets of L are expressible in L by
Lemma 3.2. The remaining implication 3 ⇒ 1 follows by an analogous argument as in the proof of 3 ⇒ 1 in
Theorem 6.5.

Combining Theorems 6.1 and 6.6 we obtain the following corollary which is essentially contained in [KMT03].

Corollary 6.7 Let L be a language. If L has an optimal proof system, then any promise language or function
class C which is expressible in L and which can use nondeterminism has a complete language or function.

As the proof of the backward implication of Theorem 6.1 does not use provable closure of C under reductions
in L, we can formulate Corollary 6.7 without this assumption.

Comparing Theorem 6.5 and Corollary 6.7, it is apparent that while we could prove the equivalence of the
existence of p-optimal proof systems for L and complete problems for all promise classes expressible in L
(Theorem 6.5), we did not obtain this equivalence for optimal proof systems (cf. Corollary 6.7). The reason is
that PS (L), considered as a promise function class, does not seem to have the property to use nondeterminism,
because otherwise, the existence of an optimal proof system for L would already imply the existence of a p-
optimal proof system for L. We can even obtain a slightly stronger result:

Proposition 6.8 If PS (SAT) can use nondeterminism, then every language with an optimal proof system also
has a p-optimal proof system.
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P r o o f. Assume that PS (SAT) can use nondeterminism. By Proposition 4.4, the class PS (SAT) is express-
ible in SAT. As SAT has an optimal proof system, Corollary 6.7 now yields a complete function for PS (SAT)
which coincides with the notion of a p-optimal proof system for SAT. From this we conclude that every language
with an optimal proof system also has a p-optimal proof system by a result from [BKM09].

7 Hard Problems under Advice

Recently, Cook and Krajı́ček [CK07] have introduced the concept of propositional proof systems with advice
which seems to yield a strictly more powerful model than the classical Cook-Reckhow setting. We recall the
definition of proof systems with advice from [BKM] which generalizes the original definition from [CK07].

Definition 7.1 ( [BKM]) For a function k : ℕ → ℕ, a proof system f for L is a proof system with k bits of
advice, if there exist a polynomial-time Turing transducer M , an advice function ℎ : ℕ → Σ∗, and an advice
selector function ℓ : Σ∗ → 1∗ such that

1. ℓ is computable in polynomial time,

2. M computes the proof system f with the help of the advice ℎ, i.e., for all � ∈ Σ∗, f(�) = M(�, ℎ(∣ℓ(�)∣)),
and

3. for all n ∈ ℕ, the length of the advice ℎ(n) is bounded by k(n).

Surprisingly, Cook and Krajı́ček [CK07] have shown that in the presence of advice, optimal propositional
proof systems exist (cf. also [BKM, BM10] for a generalization to arbitrary languages and further results on
proof systems with advice). Our next result shows that the relation between optimal proof systems and complete
sets for promise classes can be transferred to the advice setting. Thus we derive from Cook and Krajı́ček’s results
the following strong information on complete problems in the presence of advice.

Theorem 7.2 Let C be a promise complexity class and let L be a language such that C is expressible in L by a
length-depending promise. Then C/1 contains a problem (or function) using one bit of advice which is many-one
hard for C.

P r o o f. We choose a tupling function ⟨⋅⟩ on Σ∗ which is injective on lengths, i.e., for all sequences of strings
x1, . . . , xn, y1, . . . , yn ∈ Σ∗, ∣⟨x1, . . . , xn⟩∣ = ∣⟨y1, . . . , yn⟩∣ implies ∣xi∣ = ∣yi∣ for i = 1, . . . , n. Moreover,
we choose ⟨⋅⟩ in such a way that for every fixed n the function ⟨x1, . . . , xn⟩ is polynomial-time computable and
polynomial-time invertible.

We now define the problem (or function) AC with one advice bit which will be many-one hard for C. Inputs
are of the form

⟨x, 0N , 0m⟩

where x is the input, 0N is the unary encoding of a Turing machine N , and 0m is the time bound for N . On
such an input, AC first computes the string corr(x,N, 0m). Then AC uses its advice bit to verify whether or
not corr(x,N, 0m) is in L (for this step we could have also used the optimal proof system for L with one bit
of advice, cf. [CK07, BKM]). If corr(x,N, 0m) ∈ L, then AC simulates N on input x for at most m steps and
produces the corresponding output (in case the simulation does not terminate it rejects or outputs some fixed
element). As ⟨⋅, . . . , ⋅⟩ is length injective and corr is length depending, the element corr(x,N, 0m) is uniquely
determined by ∣⟨x, 0N , 0m⟩∣ and therefore the advice bit of AC can in fact refer to corr(x,N, 0m).

If A is a problem (or function) from C and N is a C-machine for A with polynomial running time p, then A
many-one reduces to AC via x 7→ ⟨x, 0N , 0p(∣x∣)⟩. Hence AC is many-one hard for C.

Let us state a concrete application of this general result. There are many reductions for disjoint NP-pairs
(cf. [GSS05]). The strongest of these, defined in [KMT03], is the following version of a many-one reduction.
Let (A,B) and (C,D) be disjoint NP-pairs. Then (A,B) strongly many-one reduces to (C,D) if there exists a
polynomial-time computable function f such that f(A) ⊆ C, f(B) ⊆ D, and f(A ∪B) ⊆ C ∪D. As disjoint
NP-pairs are expressible in TAUT by a length-depending promise [Bey07], we obtain:
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Corollary 7.3 There exist a disjoint pair (A,B) and a sequence (an)n∈ℕ with the following properties:

1. A and B are computable in nondeterministic polynomial time with advice an for inputs of length n.

2. The set {⟨an, 0n⟩ ∣ n ∈ ℕ } is computable in coNP.

3. Every disjoint NP-pair is strongly many-one reducible to (A,B).

8 Hard Problems under a Tally NP-Oracle

We now show that for promise classes with a coNP-promise, instead of using advice it also suffices to use a weak
oracle to obtain similar results as in the previous section.

Recall that a set A ⊆ Σ∗ is sparse if there exists a polynomial p such that for each n ∈ ℕ, ∣A ∩ Σn∣ ≤ p(n).
A sparse set A is called tally if A ⊆ {1n ∣ n ∈ ℕ}. We denote the set of all sparse and tally sets by Sparse and
Tally, respectively. Sparse NP-sets appear to be very weak if used as oracles. For instance, TAUT ∕∈ NPS with
a sparse NP-oracle S, unless the polynomial hierarchy collapses to its second level [Kad89].

Theorem 8.1 Let C be a promise language (or function) class which is representable in some language from
coNP. Then there exists a tally NP-oracle A such that CA contains a language (or function) which is many-one
hard for C.

P r o o f. As in the proof of Theorem 7.2 we choose a tupling function ⟨⋅, . . . , ⋅⟩ which is injective on lengths
and polynomial-time computable for sequences of fixed length.

The oracle set A now contains all machines which violate the promise condition on some given length, i.e.,

A = { 1m ∣ m = ∣⟨1N , 1n, 1t⟩∣ where N,n, t ∈ ℕ, N is a nondeterministic Turing machine and
there exists some x ∈ Σn such that corr(x,N, 1t) ∕∈ L } ,

and where L is the coNP-set in which the promise of C is expressible.
By definition, the setA is tally. Let us verify thatA ∈ NP. Because of the length injectivity of the tupling func-

tion, a number m ∈ ℕ already uniquely determines the tuple ⟨1N , 1n, 1t⟩ with ∣⟨1N , 1n, 1t⟩∣ = m. Therefore,
on input 1m we can first determine the entries N,n, t and then verify that N indeed encodes a nondeterministic
Turing machine. Next we guess a string x ∈ Σn and compute corr(x,N, 1t). As L ∈ coNP, we can check
corr(x,N, 1t) ∕∈ L in nondeterministic polynomial time.

The hard set for C will now contain elements ⟨1N , x, 1t⟩. On such input, we first query the string 1m with
m = ∣⟨1N , 1∣x∣, 1t⟩∣ to the oracle A. If the answer is negative, then we simulate M on input x for at most t
steps and answer according to the output of this simulation. If the answer is positive or if the simulation does not
terminate in t steps, then we reject. It is easy to verify that this yields a hard set (or function) for C.

As disjoint NP-pairs have a coNP-promise (cf. [Bey07]), we obtain:

Corollary 8.2 There exists a strongly many-one hard disjoint NP-pair under a tally NP-oracle, i.e., there
exists a tally set A ∈ NP and a disjoint pair (C1, C2) such that the following holds:

1. the components C1 and C2 are computable in NPA with only one query to the oracle A, and

2. every disjoint NP-pair strongly many-one reduces to (C1, C2).

It is known that there is a close connection between disjoint NP-pairs and functions from NPSV, single-
valued functions computable in nondeterministic polynomial time (cf. [Sel94, BKM09, GSSZ04] for definitions
and background information). Using this correspondence we can formulate Corollary 8.2 differently as:

Corollary 8.3 There exists a tally NP-set A and a function f ∈ NPSVA such that every function from NPSV
is many-one reducible to f .

From Theorem 8.2 we also get a sufficient condition for the existence of complete disjoint NP-pairs:

Corollary 8.4 If NP = NPNP∩Tally, then there exist ≤s-complete disjoint NP-pairs.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 15

We can rephrase this corollary using the notion of low sets from [Sch83]. Recall that a set A ∈ NP is low for
the nth level Σp

n of the polynomial hierarchy if (Σp
n)
A ⊆ Σp

n. Intuitively, if a set A is low for Σp
n, then A is useless

as an oracle for the class Σp
n. All sets A ∈ NP which are low for Σp

n are collected in the nth level Ln of the low
hierarchy. Using this terminology, we can express Corollary 8.4 differently as:

Corollary 8.5 If NP ∩ Tally ⊆ L1, then there exist ≤s-complete disjoint NP-pairs.

Whether or not NP ∩ Tally ⊆ L1 is open, but Ko and Schöning [KS85] have shown that NP ∩ Sparse ⊆ L2.

9 Conclusion

We provided new characterizations for our central questions Q1 on the existence of optimal proof systems and
Q2 on the existence of complete sets for promise classes. Our results show that, in fact, Q1 is a special case of
Q2, but also that proof systems are the hardest and most intriguing instance among all promise classes.

Whether or not there exist optimal proof systems or complete sets for promise classes remains unanswered
by our results above. Hence, our central questions Q1 and Q2 remain open. These problems have been open for
more than twenty years by now, and it seems that many researchers tend to believe in a negative answer. However,
we want to point out that the status of Q1 (and thus also of Q2) is somewhat different from that of many other
open problems in computational complexity. Namely, unlike for many open questions in complexity, a positive
answer to Q1 (the answer contrary to “common” belief), is not known to imply any unlikely consequences (such
as collapse consequences). In fact, the only known consequences of a positive answer to Q1 seem be positive
answers to Q2. Regarding the latter, we mention that Itsykson [Its09] has recently exhibited the first promise
class where Q2 indeed receives a positive answer.

In summary, the question of the existence of optimal proof systems is an important problem which even
becomes more interesting by the fact that it does not seem quite clear what the expected answer should be.
One promising approach for future research is further investigation into those models in which we have positive
answers: under advice (Theorem 7.2), under oracles (Theorem 8.1), and for randomization (cf. [HI10, Hir10]).
Trying to weaken the models in which we get completeness results on the one hand, and exploring the limitations
of these techniques on the other hand, might yield further insights into Q1 and Q2.
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