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Abstract
We define a cutting planes system CP+∀red for quantified Boolean formulas (QBF) and analyse
the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes
is of intermediate strength between resolution and Frege, our findings here show that the situation
in QBF is slightly more complex: while CP+∀red is again weaker than QBF Frege and stronger
than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out to be incomparable
to even the weakest expansion-based QBF resolution system ∀Exp+Res.

Technically, our results establish the effectiveness of two lower bound techniques for CP+∀red:
via strategy extraction and via monotone feasible interpolation.
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1 Introduction

The main problem of proof complexity is to understand the minimal size of proofs for natural
classes of formulas in important proof systems. Proof complexity deeply connects to a number
of other areas, most notably computational complexity, circuit complexity, first-order logic,
and practical solving. Recently the connection to practical solving has been a main driver
for the field. Modern SAT solvers routinely solve huge industrial instances of the NP-hard
SAT problem with even millions of variables. Because runs of the solver on unsatisfiable
formulas can be interpreted as proofs for unsatisfiability in a system corresponding to the
solver, proof complexity provides the main theoretical tool for an understanding of the power
and limitations of these algorithms.

During the last decade there has been great interest and research activity to extend the
success of SAT solvers to the more expressive quantified Boolean formulas (QBF). Due to
its PSPACE completeness (even for restricted versions [2]), QBF is far more expressive than
SAT and thus applies to further fields such as formal verification or planning [5, 21,35].

Triggered by this exciting development in QBF solving, QBF proof complexity has seen a
stormy development in past years. A number of resolution-based systems have been designed
with the aim to capture ideas in QBF solving. Broadly, these systems can be classified into
two types corresponding to two principal approaches in QBF solving: proof systems modelling
conflict driven clause learning (CDCL): Q-resolution Q-Res [7, 29], universal resolution QU-
Res [39], long-distance resolution [3], and their extensions [4]; and proof systems modelling
expansion solving: ∀Exp+Res [28] and their extensions [7]. Proof complexity research of these
systems resulted in a complete understanding of the relative complexity of QBF resolution
systems [4, 8], and the transfer of classical techniques to QBF systems was thoroughly
assessed [9–11]. In addition, stronger QBF Frege and Gentzen systems were defined and
investigated [6, 12,20].
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2 Understanding Cutting Planes for QBFs

Most SAT and QBF solvers use resolution as their underlying proof system. Resolution is
a weak proof systems for which a wealth of lower bounds and in fact lower bound techniques
are known (cf. [16, 38]). This raises the question – often controversially discussed within
the proof complexity and solving communities – whether it would be advantageous to build
solvers on top of more powerful proof systems. While Frege systems appear too strong
and proof search is hindered by non-automatisability results [14, 32], a natural system of
intermediate strength is Cutting Planes first defined in [19].

Using ideas from integer linear programming [17, 25], Cutting Planes works with linear
inequalities, allowing addition of inequalities as well as multiplication and division by positive
integers as rules. Translating propositional clauses into inequalities, Cutting Planes derives
the contradiction 0 ≥ 1, thereby demonstrating that the original set of inequalities (and
hence the corresponding clause set) has no solution. As mentioned, Cutting Planes is a proof
system of intermediate strength: it simulates resolution, but allows short proofs for the
famous pigeonhole formulas hard for resolution [27], while it is simulated by and strictly
weaker than Frege [24, 34].

Our contributions
For QBFs a similar Cutting Planes system based on integer linear programming has been
missing. It is the aim of this paper to define a natural Cutting Planes system for QBF and
give a comprehensive analysis of its proof complexity.

1. Cutting Planes for QBF. We introduce a complete and sound QBF proof system
CP+∀red that works with quantified linear inequalities, where each variable is either quantified
existentially or universally in a quantifier prefix. The system CP+∀red extends the classical
Cutting Planes system with one single ∀-reduction rule allowing manipulation of universally
quantified variables. The definition of the system thus naturally aligns with the QBF
resolution systems Q-Res [29] and QU-Res [39] and the stronger QBF Frege systems [6] that
likewise add universal reduction to their classical base systems.

Inspired by the recent work on semantic Cutting Planes [23] we also define a stronger
system semCP+∀red where in addition to universal reduction all semantically valid inferences
between inequalities are allowed (Section 7).

2. Lower bound techniques for CP+∀red. We establish two lower bound methods
for CP+∀red: strategy extraction (Section 4) and feasible interpolation (Section 5).

Strategy extraction as a lower bound technique was first devised for Q-Res [8] and
subsequently extended to QBF Frege systems [6,12]. The technique applies to calculi that
allow to efficiently extract winning strategies for the universal player from a refutation (or
alternatively Skolem functions for the existential variables from a proof of a true QBF). Here
we show that CP+∀red admits strategy extraction in TC0, thus establishing an appealing link
between CP+∀red proofs (which can count) and the counting circuit class TC0 (Theorem 8).
For each function f ∈ PSPACE/poly we construct false QBFs Qqbf-fn where each winning
strategy forces the universal player to compute f . Thus assuming the existence of f ∈
PSPACE/poly \ TC0 we obtain lower bounds for Qqbf-fn in CP+∀red (Corollary 9) and even
semCP+∀red (Corollary 21).

Feasible interpolation is another classical technique transferring circuit lower bounds to
proof size lower bounds; however, here we import lower bounds for monotone arithmetic
circuits [34] and hence the connection between the circuits and the lines in the proof system is
less direct than in strategy extraction. Feasible interpolation holds for classical resolution [31]
and Cutting Planes [34], and indeed was shown to be effective for all QBF resolution systems [9].
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Following the approach of [34] we establish this technique for CP+∀red (Theorem 12) and in
fact for the stronger semCP+∀red (Theorem 22).

It is interesting to note that while feasible interpolation is the only technique known
for classical Cutting Planes, we have two conceptually different lower bound methods – and
hence more (conditionally) hard formulas in QBF. This is in line with recent findings in [12]
showing that lower bounds for QBF Frege either stem from circuit lower bounds (for NC1) or
from classical Frege lower bounds. Our results here illustrate the same paradigm for CP+∀red:
lower bounds arise either from TC0 lower bounds (via strategy extraction) or via classical
lower bound methods for Cutting Planes (feasible interpolation).

3. Relations to other QBF proof systems. We compare our new system CP+∀red
with previous QBF resolution and Frege systems. In contrast to the classical setting, the
emerging picture is somewhat more complex: while CP+∀red is strong enough to simulate
the core CDCL QBF resolution systems Q-Res and QU-Res and indeed is exponentially
stronger than these systems (Theorem 17), CP+∀red is incomparable (under a natural circuit
complexity assumption) to even the base system ∀Exp+Res of the expansion resolution
systems (Theorem 18). Conceptually, this means that in contrast to the SAT case, QBF
solvers based on linear programming and corresponding to CP+∀red will not encompass the
full strength of current resolution-based QBF solving techniques.

On the other hand, CP+∀red turns out to be simulated by Frege+∀red, and Frege+∀red
is exponentially more powerful than CP+∀red (Theorem 19). While this separation could
be achieved by lifting the classical separation [34] to QBF by considering purely existen-
tially quantified formulas, we highlight that our separation also holds for natural QBFs
expressing the clique-co-clique principle, which is not known to have a succinct propositional
representation.

2 Notation and preliminaries

Quantified Boolean Formulas. A literal is a Boolean variable or its negation. We say a
literal x is complementary to the literal ¬x and vice versa. A clause is a disjunction of literals
and a term is a conjunction of literals. The empty clause is denoted by �, and is semantically
equivalent to false. A formula in conjunctive normal form (CNF) is a conjunction of clauses.
For a literal l = x or l = ¬x, we write var(l) for x and extend this notation to var(C) for
a clause C. Let α be any partial assignment. For a clause C, we write C|α for the clause
obtained after applying the partial assignment α to C.

Quantified Boolean Formulas (QBFs) extend propositional logic with Boolean quantifiers
with the standard semantics that ∀x.F is satisfied by the same truth assignments as F |x=0 ∧
F |x=1 and ∃x.F as F |x=0 ∨ F |x=1. We assume that QBFs are in closed prenex form with
a CNF matrix, i.e., we consider the form Q1x1 · · · Qnxn .φ where each Qi is either ∃ or ∀,
and φ is a quantifier-free CNF formula, called the matrix, in the variables x1, . . . , xn. Any
QBF can be efficiently (in polynomial time) converted to an equivalent QBF in this form
(using PSPACE-completeness of such QBFs). We denote such formulas succinctly as Q .φ.
The index ind(y) of a variable y is its position in the prefix Q; for each i ∈ [n], ind(xi) = i.
If ind(x) < ind(y), we say that x occurs before y, or to the left of y. The quantification
level lv(y) of a variable y in Q .φ is the number of alternations of quantifiers to the left of
y in the quantifier prefix of Q .φ. For instance, in the QBF ∃x1∀x2∀x3∃x4φ, lv(x1) = 1,
lv(x2) = lv(x3) = 2, and lv(x4) = 3.

Often it is useful to think of a QBF Q1x1 · · · Qnxn .φ as a game between two players:
universal (∀) and existential (∃). In the i-th step of the game, the player Qi assigns a value
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to the variable xi. The existential player wins if φ evaluates to 1 under the assignment
constructed in the game. The universal player wins if φ evaluates to 0. A strategy for xi is
a function from all variables of index < i to {0, 1}. A strategy for the universal player is a
collection of strategies, one for each universally quantified variable. Similarly, a strategy for
the existential player is a collection of strategies, one for each existentially quantified variable.
A strategy for the universal player is a winning strategy if using this strategy to assign values
to variables, the universal player wins any possible game, irrespective of the strategy used by
the existential player. Winning strategies for the existential player are similarly defined. For
any QBF, exactly one of the two players has a winning strategy. A QBF is false if and only
if there exists a winning strategy for the universal player ( [26], [1, Sec. 4.2.2], [33, Chap. 19]).

Proof systems. Following notation from [18], a proof system for a language L is a
polynomial-time onto function f : {0, 1}∗ → L. Each string φ ∈ L is a theorem, and if
f(π) = φ, then π is a proof of φ in f . Given a polynomial-time function f : {0, 1}∗ → {0, 1}∗
the fact that f({0, 1}∗) ⊆ L is the soundness property for f and the fact that f({0, 1}∗) ⊇ L
is the completeness property for f .

Proof systems for the language of propositional unsatisfiable formulas (UNSAT) are
called propositional proof systems and proof systems for the language of false QBFs are
called QBF proof systems. These are refutational proof systems. Equivalently, propositional
proof systems and QBF proof systems can be defined respectively for the languages of true
propositional formulas (TAUT) and of true QBFs. Since any QBF Q .φ can be converted in
polynomial time to another QBF Q′ .φ′ such that exactly one of Q .φ and Q′ .φ′ is true, it
suffices to consider only refutational QBF proof systems.

Given two proof systems f1 and f2 for the same language L, we say that f1 simulates f2, if
there exists a function g and a polynomial p such that f1(g(w)) = f2(w) and |g(w)| ≤ p(|w|)
for all w. Thus g translates a proof w of x ∈ L in the system f2 into a proof g(w) of x ∈ L
in the system f1, with at most polynomial blow-up in proof-size. If there is such a g that is
also polynomial-time computable, then we say that f1 p-simulates f2.
QBF resolution calculi. Resolution (Res), introduced by Blake [13] and Robinson [37], is
a refutational proof system for formulas in CNF form. The lines in the Res proofs are clauses.
The only inference (resolution) rule is C ∨ x D ∨ ¬x

C ∪D where C,D denote clauses and x
is a variable. A Res refutation derives the empty clause �.

Q-resolution (Q-Res) [29] is a resolution-like calculus operating on QBFs in prenex form
with a CNF matrix. The lines in the Q-Res proofs are clauses. It uses the propositional
resolution rule above with the side conditions that variable x is existential and if z ∈ C, then
¬z /∈ D. In addition Q-Res has the universal reduction rule C ∨ u

C
and C ∨ ¬u (∀-Red),

C
where variable u is universal and every existential variable x ∈ C has lv(x) < lv(u). If
resolution is also permitted on universal variables, then we get the calculus QU-Res [39].

Expansion-based calculi are another type of resolution systems significantly different from
Q-Res. In this paper, we will briefly refer to one such calculus, the ∀Exp+Res from [28].

Frege systems. Frege proof systems are the ‘textbook’ proof systems for propositional
logic based on axioms and rules [18]. A Frege system comprises a finite set of axiom schemes
and rules. A Frege proof is a sequence of formulas (using ∧, ∨, ¬) where each formula is
either a substitution instance of an axiom, or can be inferred from previous formulas by a
valid inference rule. Frege systems are required to be sound and implicationally complete.

A refutation of a false QBF Q .φ in the system Frege+∀red [6] is sequence of lines
L1, . . . , L` where each line is a formula, L1 = φ, L` = ⊥ and each Li is inferred from
previous lines Lj , j < i, using the inference rules of Frege or using the reduction rule
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Lj (∀Red),
Lj [u/B]

where u is the rightmost (highest index) variable among the variables of

Lj , B is a formula containing only variables left of u, and Lj [u/B] is the formula obtained
from Lj by replacing each occurrence of u in Lj by B.

Circuit classes. We recall the definitions of some standard circuit classes (cf. [40]). The
class TC0 contains all languages recognisable by polynomial-size circuits using ¬, ∨, ∧ and
threshold gates with bounded depth and unbounded fan-in. Stronger classes are obtained by
using NC1 circuits of polynomial size and logarithmic depth with bounded fan-in ¬, ∨, ∧
gates, and by P/poly circuits of polynomial size. We use non-uniform classes throughout.

Decision lists [36]. A decision list is a list L of pairs (t1, v1), . . . , (tr, vr), where each ti
is a term and vi is a value in {0, 1}, and the last term tr is the constant term true (i.e., the
empty term). A decision list L defines a Boolean function as follows: for any assignment
α, L(α) is defined to be equal to vj where j is the least index such that tj |α = 1. (Such an
item always exists, since the last term always evaluates to 1). In [6], this definition has been
generalised to C-decision lists (for some circuit class C), where instead of terms one can use
circuits from C. A C-decision list yields the circuit f(x) = ∨ri=1 (vi ∧ Ci(x) ∧ ∧j<i¬Cj(x)).
Thus a polynomial-sized TC0-decision list yields a TC0 circuit.

3 The CP+∀red proof system

In this section we define a QBF analogue of the classical Cutting Planes proof system by
augmenting it with a reduction rule for universal variables. We denote this system by
CP+∀red. Consider a false quantified set of inequalities F ≡ Q1x1 . . .Qnxn. F , where F is
a set of linear inequalities of the form

∑
xiai ≥ A for integers ai and A, and F includes

the set of inequalities B = {xi ≥ 0,−xi ≥ −1 | i ∈ [n]}. The inequalities in B are called
the Boolean axioms, because they force any integer-valued assignment ā to the variables,
satisfying F , to take only 0, 1-values. We point out that classical Cutting Planes proof systems
(only existential variables) can refute any inconsistent set of linear inequalities over integers.
However, once universal quantification is allowed, dealing with an unbounded domain is more
messy. Since our primary goal in defining this proof system is to refute false QBFs, and since
QBFs have only Boolean variables, we only consider sets of inequalities that contain B.

I Definition 1 (CP+∀red proofs for inequalities). Consider a set of quantified inequalities
F ≡ Q1x1 . . .Qnxn. F , where F also contains the Boolean axioms. A CP+∀red refutation
π of F is a quantified sequence of linear inequalities Q1x1 . . .Qnxn.[I1, I2, . . . , Il] where the
quantifier prefix is the same as in F , Il is an inequality of the form 0 ≥ C for some positive
integer C, and for every j ∈ {1, . . . , l}, either Ij ∈ F , or Ij is derived from earlier inequalities
in the sequence via one of the following inference rules:
1. Addition: From

∑
k

ckxk ≥ C and
∑
k

dkxk ≥ D, derive
∑
k

(ck + dk)xk ≥ C +D.

2. Multiplication: From
∑
k

ckxk ≥ C, derive
∑
k

dckxk ≥ dC, where d ∈ Z+.

3. Division: From
∑
k

ckxk ≥ C, derive
∑
k

ck
d
xk ≥

⌈
C

d

⌉
, where d ∈ Z+ divides each ck.

4. ∀-red: From
∑

k∈[n]\{i}

ckxk + hxi ≥ C, derive


∑

k∈[n]\{i}

ckxk ≥ C if h > 0;∑
k∈[n]\{i}

ckxk ≥ C − h if h < 0.

This rule can be used provided variable xi is universal, and provided all existential variables
with nonzero coefficients in the hypothesis are to the left of xi in the quantification prefix.
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(That is, if xj is existential, then j > i ⇒ cj = 0.) Observe that when h > 0, we are
replacing xi by 0, and when h < 0, we are replacing xi by 1. We say that the universal
variable xi has been reduced.

Each inequality Ij is a line in the proof π. Note that proof lines are always of the form∑
k ckxk ≥ C for integer-valued ck, C. The length of π (denoted |π|) is the number of lines

in it, and the size of π (denoted size(π)) is the bit-size of a representation of the proof (this
depends on the number of lines and the binary length of the numbers in the proof).

In order to use CP+∀red as a refutational system for QBFs in prenex form with CNF
matrix, we must translate QBFs into quantified sets of inequalities.

I Definition 2 (Encoding QBFs as inequalities). We first describe how to encode a CNF
formula F over variables x1, . . . , xn as a set of linear inequalities. Define R(x) = x, R(x̄) =
1 − x. A clause C ≡ (l1 ∨ · · · ∨ lk) is translated into the inequality R(C) ≡

∑k
i=1R(li) ≥

1. A CNF formula φ = C1 ∧ · · · ∧ Cm is represented as the set of inequalities Fφ =
{R(C1), R(C2), . . . , R(Cm)} ∪B, where B is the set of Boolean axioms x ≥ 0,−x ≥ −1 for
each variable x. We call this the standard encoding. For a QBF Q1x1 . . .Qnxn. φ with a
CNF matrix φ, the encoding is the quantified set of linear inequalities Q1x1 . . .Qnxn. Fφ.

We say that a 0, 1-assignment α satisfies the inequality I ≡
∑n
i=1 aixi ≥ b (i.e., I|α = 1),

if
∑n
i=1 aiαi ≥ b. For any clause C, an assignment satisfies C if and only if it satisfies R(C).

Since the standard encoding includes all Boolean axioms, we obtain the following:

I Proposition 3. Let Q .φ be a QBF in closed prenex CNF, and let F = Q. Fφ be its
encoding as a quantified set of linear inequalities. Then Q .φ is false if and only if F is false.

As for QBFs, we can play the 2-player game on the encoding F of a QBF. Players choose 0-1
values for their variables in the order defined in the prefix. The ∀ player wins if the assignment
so constructed violates some inequality in F . As before, when F is false, the universal player
has a winning strategy; otherwise the existential player has a winning strategy.

I Definition 4 (CP+∀red proofs for QBFs). Let Q .φ = Q1x1 · · · Qnxn .φ be a false QBF in
prenex CNF, and let F be its encoding as a quantified set of linear inequalities. A CP+∀red
(refutation) proof of Q .φ is a CP+∀red proof of F as defined in Definition 1.

It is worth noting that a CP+∀red proof for inequalities, as in Definition 1, can start with
encodings of QBFs, but can also start with quantified sets of inequalities that contain the
Boolean axioms but do not correspond to any QBF, since the initial non-Boolean inequalities
can have arbitrary integer coefficients.

Observe that in the ∀-red step of CP+∀red, if u is the universal variable being reduced,
then u need not be the rightmost variable with a non-zero coefficient. There may be universal
variables to the right of u with non-zero coefficients. This is analogous to the conditions in
QU-Res. However, in the Frege+∀red proof system defined in [6], the variable being reduced
from a formula is required to be the rightmost in the formula. We show below that imposing
such a condition in CP+∀red does not affect the strength of the proof system. That is, if
we call a proof where the ∀-red steps are applied only to the rightmost universal variables
with non-zero coefficients a normal-form proof, then any CP+∀red proof can be efficiently
converted to one in normal form. In later sections we often assume this normal form.

I Lemma 5. Any CP+∀red proof can be converted into normal form in polynomial time.

Proof. (Sketch.) To reduce a variable u, first reduce all universal variables to the right of u,
then reduce u, then re-introduce the previously reduced variables using Boolean axioms. J
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Now we show that CP+∀red is a complete and sound proof system for false QBFs.

I Theorem 6. CP+∀red is a complete and sound proof system for false QBFs. That is, if
ϕ is a false QBF, then there exists a CP+∀red refutation of ϕ (completeness), and if there
exists a CP+∀red refutation of ϕ, then ϕ is false (soundness).

Proof. (Sketch.) Completeness: We show that CP+∀red p-simulates QU-Res; given a QU-Res
proof π, for each C ∈ π we can derive R(C) in CP+∀red. (The resolution rule is simulated
by the CP part as in the classicial case, and the ∀-Red rule of QU-Res is also present in
CP+∀red.) Since QU-Res is known to be complete, it follows that CP+∀red is complete.

Soundness: Let F = Q. F be the standard encoding of ϕ, and let π = Q.[I1, I2, . . . , Il]
be a normal form CP+∀red refutation of F . We show that the following is valid for each
j ∈ [l]: Q. [F ∧ I1 ∧ · · · ∧ Ij−1] =⇒ Q. [F ∧ I1 ∧ · · · ∧ Ij−1 ∧ Ij ]. Thus if F = Q.F is true,
then so is Q. [F ∧ I1 ∧ · · · ∧ Il−1 ∧ Il]. However, Il is not satisfied by any assignment, so this
statement is false. Hence F is false, and by Proposition 3, ϕ is also false. J

Note that for false quantified inequalities, the soundness of CP+∀red follows from the same
proof, but completeness will require an additional argument.

Since we will refer to the p-simulation of QU-Res by CP+∀red later, we state it as a
separate lemma; the proof is in the completeness part of the proof of Theorem 6.

I Lemma 7. CP+∀red p-simulates QU-Res.

4 Strategy extraction for CP+∀red

Strategy extraction is an important paradigm in QBF, also very desirable in practise (cf.
[3, 7, 22,26]). Winning strategies for the universal player can be very complex. But a QBF
proof system has the strategy extraction property for a particular class of circuits C whenever
we can efficiently extract, from every refutation π of a false QBF ϕ, a winning strategy for
the universal player where the strategies for individual universal variables are computable in
circuit class C.

In this section we show how to extract, from a refutation in CP+∀red, winning strategies
computable by bounded depth circuits with threshold gates.

I Theorem 8 (Strategy Extraction Theorem). Given a false QBF ϕ = Q. φ, with n variables,
and a CP+∀red refutation π of ϕ of size m, it is possible to extract from π a winning strategy
where for each universal variable u ∈ ϕ, the strategy σu can be computed by Boolean circuits
of (m+ n)O(1) size, constant depth, with unbounded fanin AND, OR, NOT gates as well as
threshold gates. In particular, if ϕ can be refuted in CP+∀red in nO(1) size, then the winning
strategies can be computed in TC0.

Proof. (Sketch.) We adapt the technique from [6]. Let Q. F be the standard encoding of
ϕ, and let π = Q. [I1, . . . , Il] be a normal-form CP+∀red proof of Q. F of length l and size
m ≥ l. For j ∈ {0, 1, . . . , l}, define πj = Q. [Ij+1, . . . , Il] and Fj = F ∪ {I1, . . . , Ij}. By
downward induction on j, from πj we show how to compute, for each universal variable u, a
Boolean function σju that maps each assignment to the variables quantified before u to a bit
{0, 1}. These functions satisfy the property that in a 2-player game played on the formula
Q. Fj , if the universal player uses strategy σju for each universal variable u, then finally some
inequality in Fj is falsified. We describe the functions σju by decision lists of size O(l), where
each condition is checkable by a constant-depth polynomial-in-m sized threshold circuit.

Since all axioms are included in F , we can skip the axiom download steps in the proof.
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The strategy is as follows: σlu = 0 for all u. For j ≤ l, if Ij is obtained by a classical rule,
then σj−1

u = σju for every universal variable u. If Ij is derived using a ∀-red rule; that is
Ij = Ik|u=bj

for some k < j, then for all u′ 6= u, σj−1
u′ = σju′ . For u, if Ik|u=bj

(~a) = 0, then
σj−1
u (~a) = bj , else σj−1

u (~a) = σju(~a). (The value Ik|u=bj (~a) can be determined since variables
to the right of u have zero coefficient in Ik.) It is easy to see that these functions so defined
have the desired property. J

Theorem 8 yields the following conditional lower bound for CP+∀red proof size.

I Corollary 9. If PSPACE/poly 6⊆ TC0, then there exists a family of false QBFs Qqbf-fn that
requires super-polynomial size proofs in CP+∀red.

Proof. Let fn ∈ PSPACE/poly \ TC0. Consider the following false sentence based on fn:

∃x1 . . . xn∀z.
[
f(~x) 6= z

]
.

Since fn is in PSPACE/poly and QBF is PSPACE-complete, the value of fn can be
compactly expressed by a QBF. That is, fn(~x) ≡ Q1y1 . . .Qryr.ψn(~x, ~y) where r is polynomial
in n and ψn(~x, ~y) is in P/poly. Thus we have the false sentence

∃x1 . . . xn∀z.
[
(

fn(~x)︷ ︸︸ ︷
Q1y1 . . .Qryr.ψn(~x, ~y))↔ ¬z

]
.

We now choose circuits Cn computing ψn and use additional variables ~s and ~t to represent
the gate values in the P/poly circuits Cn and ¬Cn, respectively. We obtain the QBF

∃x1 . . . xn∀zQ1y1 . . .QryrQ̄1w1 . . . Q̄rwr∃~s,~t.
[
(Cn(~x, ~y,~s) ∨ z) ∧

(
¬Cn(~x, ~w,~t) ∨ ¬z

)]
where Q̄ = ∃ if Q = ∀ and vice versa. We call this formula Qqbf -fn and remark that it is a
false prenex QBF with CNF matrix. (Cn can be expressed as a CNF; then adding the literal
z to each clause expresses Cn ∨ z. Similarly for ¬Cn ∨ ¬z.)

In the two-player game on Qqbf -fn or on its standard encoding, the only winning strategy
for the universal variable z is the function fn(~x) itself. Therefore if there exists a polynomial
size CP+∀red proof for Qqbf -fn, then from Theorem 8, fn ∈ TC0, a contradiction. J

5 Feasible (monotone) interpolation for CP+∀red

In this section we show that CP+∀red admits feasible monotone interpolation. We adapt the
technique first used by Pudlák [34] to re-prove and generalise the result of Krajíček [31].

Consider a false QBF of the form

ϕ = ∃~pQ~qQ~r.
[
A′(~p, ~q) ∧B′(~p, ~r)

]
where ~p, ~q, and ~r are mutually disjoint sets of propositional variables, A′(~p, ~q) is a set of
clauses using only the ~p and ~q variables, and B′(~p, ~r) is a set of clauses using only the ~p and
~r variables. Thus ~p are the common variables between them. The ~q and ~r variables can
be quantified arbitrarily, with any number of quantification levels. Since ϕ is false, on any
assignment ~a to the variables in ~p, either ϕ~a,0 = Q~q. A′(~a, ~q) or ϕ~a,1 = Q~r. B′(~a,~r) (or both)
must be false. An interpolant for ϕ is a Boolean function that, given ~a, indicates which of
ϕ~a,0, ϕ~a,1 is false. As defined in [9], a QBF proof system S admits feasible interpolation
if from an S-proof π of such a QBF ϕ, we can extract a Boolean circuit Cπ computing
an interpolant for ϕ, such that, the size of Cπ is polynomially related to the size of π. If,
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whenever the ~p variables occur only positively in A′ or only negatively in B′, the polynomial
sized (with respect to the size of π) interpolating circuit for ϕ is monotone, then we say that
S admits monotone feasible interpolation.

Cutting Planes naturally gives rise to arithmetic rather than Boolean circuits, as in the
classical case in [34]. Generalising this to the case of QBFs, we have the following definitions.

I Definition 10. [34] A monotone real circuit is a circuit which computes with real numbers
and uses arbitrary non-decreasing real unary and binary functions as gates.

We say that a monotone real circuit computes a Boolean function (uniquely determined
by the circuit), if for all inputs of 0’s and 1’s the circuit outputs 0 or 1.

I Definition 11. A QBF proof system S admits monotone real feasible interpolation if for
any false QBF ϕ of the form ∃~pQ~qQ~r.

[
A′(~p, ~q) ∧B′(~p, ~r)

]
where the ~p variables occur only

positively in A′ or only negatively in B′, and for any S-proof π of ϕ, we can extract from
π a monotone real circuit C of size polynomial in the length of π and the number n of ~p
variables, such that C computes a Boolean function, and on every 0, 1 assignment ~a for ~p,

C(~a) = 0 =⇒ Q~q.A′(~a, ~q) is false, and
C(~a) = 1 =⇒ Q~r.B′(~a,~r) is false.

Such a C is called a monotone real interpolating circuit for ϕ.

We prove that the CP+∀red proof system for false QBFs has this property:

I Theorem 12. CP+∀red for false QBFs admits monotone real feasible interpolation.

To prove this, we will actually prove a stronger theorem, about interpolants for all false
quantified sets of inequalities (not just those arising from false QBFs).

I Theorem 13. CP+∀red for inequalities admits monotone real feasible interpolation. That
is, let F be any false quantified set of inequalities of the form ∃~pQ~qQ~r.

[
A(~p, ~q) ∧ B(~p, ~r)

]
where A ∪ B includes all Boolean axioms, and where the coefficients of ~p are either all
non-negative in A or are all non-positive in B. If F has a CP+∀red-proof π, of length l,
then we can extract a monotone real circuit C of size polynomial in l and the number n of ~p
variables in F , such that C computes a Boolean function, and on any 0, 1 assignment ~a to ~p,

C(~a) = 0 =⇒ Q~q.A(~a, ~q) is false, and
C(~a) = 1 =⇒ Q~r.B(~a,~r) is false.

Such a C is called a monotone real interpolating circuit for F .

Proof. (Sketch.) Let π = ∃~pQ~qQ~r. [I1, . . . , Il] be a CP+∀red refutation of F . The idea, as
in [34], is to associate with each inequality

I ≡
∑
k

ekpk +
∑
i

fiqi +
∑
j

gjrj ≥ D

in π, two inequalities
I0 ≡

∑
i

fiqi ≥ D0, I1 ≡
∑
j

gjrj ≥ D1

depending on the Boolean assignment ~a to the ~p variables, in such a way that
I0 and I1 together imply I|~a. (It suffices to ensure D0 +D1 ≥ D −

∑
k

ekak.)
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I0 can be derived solely from the Q~q.A(~a, ~q) part in CP+∀red.
I1 can be derived solely from the Q~r.B(~a,~r) part in CP+∀red.

Then the inequalities corresponding to the last step of the proof, Il, are 0 ≥ D0 and 0 ≥ D1,
with D0 +D1 ≥ 1. Hence D0 > 0 =⇒ ~Q~q.A(~a, ~q) is false, and D1 > 0 =⇒ ~Q~r.B(~a,~r) is
false. Note that we only need to compute one of the values D0, D1 to identify a false part of
F . Furthermore, we will show that if all the coefficients ek in B(~p, ~r) are non-positive, then
D1 can be computed by a real monotone circuit of size O(nl). If all the coefficients ek in
A(~p, ~q) are non-negative, then we will show that −D0 can be computed by a real monotone
circuit of size O(nl). (The inputs to the circuit are an assignment ~a to the ~p variables.)
Applying the unary non-decreasing threshold function D1 > 0? or −D0 ≥ 0? to its output
will then give a monotone real interpolating circuit for F . J

Using monotone interpolation (Theorem 12), we now prove an unconditional lower bound
for the CP+∀red proof system, which is based on the false clique-co-clique formulas from [9].

I Definition 14. Fix positive integers k, n with k ≤ n. CliqueCoCliquen,k is the class of
QBFs of the form ∃~pQ~qQ~r. [An,k(~p, ~q) ∧Bn,k(~p, ~r)] where

~p is the set of variables {puv | 1 ≤ u < v ≤ n}. An assignment to ~p picks a set of edges,
and thus an n-vertex graph that we denote G~p.
Q~q. An,k(~p, ~q) is a QBF expressing the property that G~p has a clique of size k.
Q~r. Bn,k(~p, ~r) is a QBF expressing the property that G~p has no clique of size k.

Any QBF in CliqueCoCliquen,k expresses the clique-co-clique principle (there is a graph
both containing and not containing a k-clique) and is obviously false. In [9], a particular
QBF ϕn ∈ CliqueCoCliquen,n/2 of size polynomial in n is described. It can be easily
generalised to QBFs ϕn,k ∈ CliqueCoCliquen,k of size polynomial in n.

Let Φn,k be any QBF in CliqueCoClique, and suppose that it has a CP+∀red proof of
length l. From Theorem 12, we obtain a monotone real circuit C of size O(l+n2) computing
a Boolean function, such that for every 0, 1 input vector ~a of length

(
n
2
)
encoding a graph G,

C(~a) = 1 ⇐⇒ G has a k clique.
In [34], Pudlák showed the following exponential lower bound on the size of real monotone

circuits interpolating the famous “clique-color” encodings.

I Theorem 15 ( [34]). Suppose that the inputs for a monotone real circuit C are 0, 1 vectors
of length

(
n
2
)
encoding in the natural way graphs on an n-element set. Suppose that C

outputs 1 on all cliques of size k and outputs 0 on all complete (k − 1)-partite graphs, where
k = b 1

8 (n/ logn)2/3c. Then the size of the circuit is at least 2Ω((n/ logn)1/3).

(In some earlier literature, clique-color has been referred to as clique-co-clique. However,
this is misleading because the clique-color encoding is weaker than Φn,k in the following
sense. The clique-color encoding says that there exists a graph which has a k-clique and is
complete (k − 1)-partite (maximal (k − 1)-colorable). A graph may neither have a k-clique
nor be complete (k − 1)-partite, so both parts of the clique-color formula may be false. Our
clique-co-clique formulas, on the other hand, always have exactly one true part.)

Since complete (k − 1)-partite graphs have no k-clique, the real monotone interpolating
circuit C we obtain from a CP+∀red proof of Φn,k also satisfies the premise of Theorem 15.
Hence, C must have size exponential in n. But C’s size is polynomially related to the length
of the CP+∀red proof of Φn,k. We have thus obtained the following:

I Corollary 16. For k = b 1
8 (n/ logn)2/3c, any false QBF Φn,k ∈ CliqueCoCliquen,k

requires proofs of length exponential in n in the CP+∀red proof system. In particular, the
QBF ϕn,k from Definition 14 requires proofs of length exponential in |ϕn,k| in CP+∀red.
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6 Relative power of CP+∀red and other QBF proof systems

In this section we relate the power of CP+∀red with other well known QBF proof systems.

I Theorem 17. CP+∀red is exponentially stronger than Q-Res and QU-Res.
Proof. By Lemma 7, CP+∀red p-simulates QU-Res (and hence Q-Res), and is thus at least
as strong as them. From classical proof complexity we know that false CNF formulas
based on the pigeonhole principle are easy for Cutting Planes proof system [19] but hard
for resolution [27]. Therefore CP+∀red is exponentially more powerful than any QBF proof
system based on resolution (Q-Res, QU-Res, etc); these systems cannot simulate CP+∀red. J

I Remark. Note that the separating QBFs have only existential quantification. However,
there are also separating QBFs using universal quantifiers (cf. the appendix).

This means that CP+∀red is stronger than the classical CDCL proof systems. However,
as we show next, is is weaker than even the base system of expansion solving.

I Theorem 18. CP+∀red and ∀Exp+Res are incomparable unless P/poly = TC0, i.e.,
∀Exp+Res cannot simulate CP+∀red.
If P/poly 6⊆ TC0 then CP+∀red cannot simulate ∀Exp+Res.

Proof. In [28], Janota and Marques-Silva show that there exists a family of false QBFs
which are hard for ∀Exp+Res but easy to refute in Q-Res. As CP+∀red p-simulates Q-Res
(Lemma 7), we conclude that ∀Exp+Res cannot simulate CP+∀red.

For the second claim let fn ∈ P/poly \ TC0 be computed by circuit family Cn of size
l(n) ∈ nO(1). We use Cn to express the obviously false sentence ∃x1 · · ·xn∀z.f(~x) 6= z.
Associate a variable ti with each gate gi in Cn, and consider the QBF

Q-fn ≡ ∃x1 · · ·xn∀z∃t1 · · · tl.(tl 6= z) ∧
l∧
i=1

(ti is consistent with the inputs to gate i).

The inner formula can be written as an O(l)-sized CNF, so Q-fn has size nO(1). Note that
Q-fn has a single universal variable z, and the (only) winning strategy for the universal
player is z = f(~x). If Q-fn has a proof of size polynomial in n, then by Theorem 8, this
strategy, and hence fn, are in TC0, a contradiction. On the other hand, from [8, Proposition
28], we know that the formula Q-fn can be refuted in ∀Exp+Res in O(n+ l) steps. J

I Theorem 19. Frege+∀red is exponentially stronger than CP+∀red:
Frege+∀red p-simulates CP+∀red, whereas CP+∀red does not simulate Frege+∀red.
Proof. (Sketch.) In the classical (propositional) setting, Cook, Coullard and Turán [19] first
showed that Extended Frege p-simulates Cutting Planes. Then Goerdt [24] showed that even
Frege p-simulates Cutting Planes. Using techniques from [15], [19], and [24], we show that the
same simulation goes through with minor modifications for QBFs.

Since Frege is exponentially more powerful than Cutting Planes over propositional formulas
(as witnessed by the clique-colour formulas [34], see also Section 5), the converse simulation
fails, and CP+∀red and Frege+∀red are exponentially separated. J

There are also separating examples with non-trivial universal quantifiers. In Section 5, we
described a class of QBF formulas expressing the clique-co-clique principle. By Corollary 16,
none of them have short proofs in CP+∀red. We show that a particular member of this class
(i.e., a particular way of encoding clique-co-clique) has short proofs in Frege+∀red.
I Theorem 20. There is a Φn,k ∈ CliqueCoCliquen,k of size polynomial in n, with a
Frege+∀red proof of size polynomial in n.
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7 Semantic cutting planes for QBFs

The classical Cutting Planes proof system can be extended to the semantic Cutting Planes
proof system by allowing the following semantic inference rule: from inequalities I ′, I ′′, we
can infer I in one step if every Boolean assignment satisfying both I ′ and I ′′ also satisfies I.
In [23], it is shown that semantic Cutting Planes is exponentially more powerful than Cutting
Planes. We now augment the system semantic Cutting Planes with the ∀-reduction rule as
defined for CP+∀red, to obtain a QBF version denoted semCP+∀red. In fact, in this system
we need only two rules, semantic inference and ∀-reduction, since the addition, multiplication
and division rules of Cutting Planes are also semantic inferences, and the Boolean axioms
can be semantically inferred from any inequality.

It is clear that semCP+∀red is sound and complete. However it is not possible to verify
the semantic rule efficiently (unless P= NP).

As in CP+∀red, we call a semCP+∀red proof π a normal-form proof if ∀-red is applied
only to the rightmost universal variable. Since one can use Boolean axioms in semCP+∀red;
Lemma 5 is valid in semCP+∀red as well. That is one can convert any semCP+∀red proof π
into a normal form in polynomial time.

Clearly, SemCP+∀red is at least as powerful as CP+∀red. From classical proof complexity
we known that semantic Cutting Planes is exponentially more powerful than Cutting Planes [23].
That is, in [23, Theorem 2], it has been shown that for every n, there exists a CNF formula
Fn which has a short semantic Cutting Planes refutation but needs 2nΩ(1) lines to refute in
Cutting Planes. Thus semCP+∀red is also exponentially more powerful than CP+∀red, as
witnessed by these purely existentially quantified formulas.

In Theorem 8, we established strategy extraction from CP+∀red proofs. These results
hold for semCP+∀red proofs as well; if Ij is obtained by semantic inference, we do not
change the strategy functions and let σj−1

u = σju for every universal variable u. Thus all the
conditional lower bounds on CP+∀red (Corollary 9, Theorem 18) continue to hold:

I Corollary 21. 1. If PSPACE 6⊆ TC0, then for any fn ∈ PSPACE \ TC0, the false QBFs
Qqbf-fn require super-polynomial size proofs in semCP+∀red.

2. If P/poly 6⊆ TC0, then semCP+∀red cannot simulate ∀Exp+Res. For any fn ∈ P/poly\TC0,
the false QBFs Q-fn require super-polynomial size proofs in semCP+∀red.

For obtaining unconditional lower bounds, we need an analogue of real monotone interpol-
ation (Theorems 12, 13). For this, we adapt the corresponding proof technique used in the
classical case from [23]. Using their technique for semantic inference, and handling axioms
and ∀-reduction rules as in the proof of Theorem 13, everything goes through as desired.

I Theorem 22. SemCP+∀red admits monotone real feasible interpolation for false QBFs.

Using Theorem 22, we obtain an unconditional exponential lower bound for semCP+∀red,
analogous to Corollary 16.

I Corollary 23. For k = b 1
8 (n/ logn)2/3c, any false QBF Φn,k ∈ CliqueCoCliquen,k

requires proofs of length exponential in n in the semCP+∀red proof system. In particular, the
QBFs ϕn,k from Definition 14 require proofs of length exponential in |ϕn,k| in semCP+∀red.
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Appendix

The appendix contains all proofs and details omitted from the main part of the paper due to
space constraints.

More details supplementing Section 2

Expansion-based calculi are another type of resolution systems significantly different from Q-
Res. These calculi are based on instantiation of universal variables and operate on clauses that
comprise only existential variables from the original QBF, which are additionally annotated
by a substitution to some universal variables, e.g. ¬xu/0,v/1. For any annotated literal lσ,
the substitution σ must not make assignments to variables right of l, i.e. if u ∈ dom(σ), then
u is universal and lv(u) < lv(l). To preserve this invariant, we use the auxiliary notation
l[σ], which for an existential literal l and an assignment σ to the universal variables filters
out all assignments that are not permitted, i.e. l[σ] = l{u/c∈σ | lv(u)<lv(l)}. We say that an
assignment is complete if its domain is all universal variables. Likewise, we say that a literal
xτ is fully annotated if all universal variables u with lv(u) < lv(x) in the QBF are in dom(τ),
and a clause is fully annotated if all its literals are fully annotated.

The calculus ∀Exp+Res from [28] works with fully annotated clauses on which resolution is
performed. For each clause C from the matrix and an assignment τ to all universal variables,
∀Exp+Res can use the axiom

{
l[τ ] | l ∈ C, l existential

}
∪{τ(l) | l ∈ C, l universal}. As its

only rule it uses the resolution rule on annotated variables

C ∨ xτ D ∨ ¬xτ (Res).
C ∪D

Frege systems. Frege proof systems are the common ‘textbook’ proof systems for
propositional logic based on axioms and rules [18]. The lines in a Frege proof are propositional
formulas built from propositional variables xi and Boolean connectives ¬, ∧, and ∨. A Frege
system comprises a finite set of axiom schemes and rules, e.g., φ ∨ ¬φ is a possible axiom
scheme. A Frege proof is a sequence of formulas where each formula is either a substitution
instance of an axiom, or can be inferred from previous formulas by a valid inference rule.
Frege systems are required to be sound and implicationally complete. The exact choice of
the axiom schemes and rules does not matter as any two Frege systems are p-equivalent,
even when changing the basis of Boolean connectives [18] and [30, Theorem 4.4.13].

Usually Frege systems are defined as proof systems where the last formula is the proven
formula. We use here the equivalent setting of refutation Frege systems where we start with
the negation of the formula that we want to prove and derive the contradiction ⊥.

A refutation of a false QBF Q .φ in the system Frege+∀red [6] is sequence of lines
L1, . . . , L` where each line is a formula, L1 = φ, L` = ⊥ and each Li is inferred from previous
lines Lj , j < i, using the inference rules of Frege or using the reduction rule

Lj (∀Red),
Lj [u/B]

where u is the rightmost (highest index) variable among the variables of Lj , B is a formula
containing only variables left of u, and Lj [u/B] is the formula obtained from Lj by replacing
each occurrence of u in Lj by B.
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Missing proofs from Section 3

Lemma 5. Any CP+∀red proof can be converted into normal form in polynomial time.

Proof. (of Lemma 5) Let π be any CP+∀red proof of a false QBF ϕ. We efficiently convert
π into a normal-form proof π′ using the Boolean axioms. Let inequality I ′ be derived in π
from I by a ∀-reduction step on w. If w is the rightmost universal variable in I, then nothing
needs to be done. Otherwise, in any case, no existential variable right of w can have non-zero
coefficient in I. Let (w =)w0, w1, . . . , wk be the universal variables right of (including) w
with non-zero coefficients h0, h1, . . . , hk in I. We obtain I ′ from I via the following (3k + 1)
steps:
For j = k down to 0, reduce wj .
For j = 1 up to k, if hj > 0 then add hj(wj ≥ 0), else add (−hj)(−wj ≥ −1).
Observe that this proof fragment is in normal-form. J

Theorem 6. CP+∀red is a complete and sound proof system for false QBFs. That is, if ϕ is
a false QBF, then there exists a CP+∀red refutation of ϕ (completeness), and if there exists
a CP+∀red refutation of ϕ, then ϕ is false (soundness).

Proof. Completeness: We show that CP+∀red p-simulates QU-Res; given a QU-Res proof π,
for each C ∈ π we can derive R(C) in CP+∀red.

We know that the rules of the classical cutting planes system can p-simulate the resolution
rule [19]. Observe that the same simulation works independent of the quantifier prefix or the
nature of the pivot variable. Now we show how CP+∀red simulates the ∀-red rule of QU-Res
proof system. Consider a ∀-red step in QU-Res of the form C∨u

C , where u is universal and
all existential variables in the clause C come before u in the prefix. By induction we have
derived the inequality R(C ∨u) for the clause C ∨u. Reducing u from this inequality is valid.
Clearly, the coefficient of u in the inequality R(C ∨ u) is +1. Hence in the CP+∀red proof,
using the ∀-red rule assigns u = 0 and hence derives R(C). Similarly, for C∨ū

C , the coefficient
of u in the inequality R(C ∨ ū) is −1 (the variable u contributes (1− u) to R(C ∨ ū)), hence
the ∀-red rule in CP+∀red sets u = 1 and again derives R(C).

Since QU-Res is known to be complete, it follows that CP+∀red is complete.
Soundness: Let Q .φ = Q1x1 · · · Qnxn .φ be a QBF in closed prenex CNF form, and let

F = Q. F be its encoding as inequalities. Recall that F also includes Boolean axioms. Let
π = Q1x1 . . .Qnxn.[I1, I2, . . . , Il] be any CP+∀red refutation (see Definition 1) of F . We can
assume (using Lemma 5) that π is in normal form.

To prove soundness, we need to show that Q .φ is false. From Proposition 3, it suffices to
show that F is false. We do this by showing that the following is valid for each j ∈ [l]:

Q1x1 . . .Qnxn. [F ∧ I1 ∧ · · · ∧ Ij−1] =⇒ Q1x1 . . .Qnxn. [F ∧ I1 ∧ · · · ∧ Ij−1 ∧ Ij ],

where Ij is derived from some inequalities before it via an inference rule of CP+∀red.
Observe that the cases when Ij is derived via Addition, Multiplication, or Division rules are
straightforward, since every Boolean assignment satisfying F ∧ I1 ∧ · · · ∧ Ij−1 also satisfies
Ij . We now concentrate on the ∀-red step.

Say Ij is derived from Ik, k < j, via the ∀-red rule. Let u = xr be the universal variable
reduced, and let Ik be

∑
s csxs ≥ C for some integers c1, . . . , cn, C. Since π is in normal

form, for all s > r, cs = 0.
Suppose the claimed statement is not valid. That is, Fj−1 = Q .F ∧ I1 ∧ · · · ∧ Ij−1 is

true but Fj = Q .F ∧ I1 ∧ · · · ∧ Ij is false. The existential player has a winning strategy
σ∃ for Fj−1, while the universal player has a winning strategy σ∀ for Fj . Let α be the
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assignment constructed when the players use these strategies for their variables. Then α
satisfies F ∧ I1 ∧ · · · ∧ Ij−1, and in particular, Ik, but does not satisfy Ij . Define a new
strategy σ′∀ for the universal player; it uses the same strategy as σ∀ for variables other than
xr, but flips the strategy of σ∀ for variable xr. Let β be the assignment constructed by
strategies σ∃ and σ′∀. Then βs = αs for all s < r, and βr 6= αr. These are the only values
that matter for evaluating Ik. An examination of the ∀-red rule shows that it derives the
tighter of the two inequalities Ik|xr=0 and Ik|xr=1 as Ij , and hence Ik(β) equals Ij(α) and is
false. Thus the existential player using strategy σ∃ does not win against the universal player
using strategy σ′∀, and hence is not a winning strategy for Fj−1, a contradiction.

Now let us assume that F is true, then we conclude that Q1x1 . . .Qnxn.[I1, I2, . . . , Il] is
also true. A contradiction, as the last inequality Il ≡ 0 ≥ C is always false. J

Missing proofs from Section 4

Theorem 8 (Strategy Extraction Theorem). Given a false QBF ϕ = Q. φ, with n

variables, and a CP+∀red refutation π of ϕ of size m, it is possible to extract from π a
winning strategy where for each universal variable u ∈ ϕ, the strategy σu can be computed by
Boolean circuits of (m+ n)O(1) size, constant depth, with unbounded fanin AND, OR, NOT
gates as well as threshold gates. In particular, if ϕ can be refuted in CP+∀red in nO(1) size,
then the winning strategies can be computed in TC0.

Proof. We adapt the technique from [6]. Let Q. F be the standard encoding of ϕ, and let
π = Q. [I1, . . . , Il] be a normal-form CP+∀red proof of Q. F of length l and size m ≥ l.
For j ∈ {0, 1, . . . , l}, define πj = Q. [Ij+1, . . . , Il] and Fj = F ∪ {I1, . . . , Ij}. By downward
induction on j, from πj we show how to compute, for each universal variable u, a Boolean
function σju that maps each assignment to the variables quantified before u to a bit {0, 1}.
These functions satisfy the property that in a 2-player game played on the formula Q. Fj ,
if the universal player chooses values for each universal variable u according to σju, then
finally some inequality in Fj is falsified. We describe the functions σju by decision lists of size
O(l), where each condition is checkable by a constant-depth polynomial-in-m sized threshold
circuit. In particular, when m is polynomial in n, the functions σju are computable in TC0.

Since all axioms are included in F , we can skip the axiom download steps in the proof.
Base case: When j = l, define σlu = 0 for all u. Indeed σlu can take any Boolean value as
Fl contains Il which is the contradiction 0 ≥ 1.
Induction hypothesis: Assume that the claim is true at the jth step.
Induction step: For j ≤ l, if Ij is obtained by a classical rule, then σj−1

u ≡ σju for every
universal variable u. By induction, any strategy of the existential player, the assignment
constructed by playing according to σju falsifies some inequality in Fj . If it does not falsify Ij ,
then it must falsify an Ik ∈ Fj with k < j, that is, an Ik ∈ Fj−1. Otherwise, since it falsifies
Ij and since the inference rules are sound, it also falsifies at least one of the hypotheses Ik,
k < j.

If Ij is derived using a ∀-red rule; that is Ij = Ik|u=bj for some k < j, then for all u′ 6= u,
σj−1
u′ ≡ σju′ . For u, if Ik|u=bj

(~a) = 0, then σj−1
u (~a) = bj , else σj−1

u (~a) = σju(~a). (The value
Ik|u=bj

(~a) can be determined since variables to the right of u have zero coefficient in Ik.)
By induction, against any strategy of the existential player, the assignment constructed

by playing according to σju falsifies some inequality in Fj . If does not falsify Ij , then it
must falsify an Ik′ ∈ Fj with k′ < j, that is, an Ik′ ∈ Fj−1. In this case, we have defined
σj−1
u ≡ σju, so playing according to σj−1

u also falsifies Ik′ ∈ Fj−1. Otherwise, since it falsifies
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Ij = Ik|u=bj
and since in this case we have defined σj−1

u (~a) = bj , so playing according to
σj−1
u also falsifies Ik ∈ Fj−1.
The decision list Dj−1

u for σj−1
u is constructed as follows: If ¬(Ik|z=bj

(~x)) then Dj−1
u (~x) =

bj else Dj−1
u (~x) = Dj

u(~x). Observe that Dj−1
u (~x) has just one more condition than Dj

u(~x).
Since the bit-size of Ik is at most m, and since addition and multiplication are in TC0, one
can check the if condition by a bounded-depth threshold circuit with size polynomial in m.
TC0.

The decision lists D0
u have length O(l) and each condition is checkable by a constant-depth

threshold circuit of size polynomial in m. The result follows. J

Missing proofs from Section 5

We first show why Theorem 12 follows from Theorem 13.

Theorem 12. CP+∀red for false QBFs admits monotone real feasible interpolation.

Proof. (assuming Theorem 13.) Let ϕ be the given false QBF. Encoding it as a quantified
set of inequalities as per Definition 2, we get a quantified set of linear inequalities F = Q. F ,
of the form

F = ∃~pQ~qQ~r.
[
A(~p, ~q) ∪B(~p, ~r)

]
Here, A(~p, ~q) contains inequalities R(C) for all clauses C ∈ A′; these are of the form∑
k

ekpk +
∑
i

fiqi ≥ b. Similarly, B(~p, ~r) contains inequalities R(C) for all C ∈ B′; these are

of the form:
∑
k

ekpk +
∑
j

gjrj ≥ b. The Boolean axioms corresponding to the ~q variables are

included in A, those corresponding to the ~r variables are included in B. The Boolean axioms
corresponding to the ~p variables also have to be included in A ∪B. They have both positive
and negative coefficents. If ~p occurs only positively in A′, we include these in B, otherwise
we include them in A.

Since ϕ is false, so is F . On any assignment ~a to the variables in ~p, either F~a,0 = Q~q. A(~a, ~q)
or F~a,1 = Q~r. B(~a,~r) (or both) must be false. Furthermore, for b ∈ {0, 1}, F~a,b is false
exactly when ϕ~a,b is false. Thus a monotone real interpolating circuit for F is also a monotone
real interpolating circuit for ϕ.

Note that if ~p occurs only positively in A′, then the coefficients ek in all the inequalities
in A are non-negative. Similarly, if ~p occurs only negatively in B′, then the coefficients ek in
all the inequalities in B are non-positive. Hence, invoking Theorem 13 on F , we obtain the
desired monotone real interpolating circuit for F and for ϕ. J

Theorem 13. CP+∀red for inequalities admits monotone real feasible interpolation. That is,
let F be any false quantified set of inequalities of the form ∃~pQ~qQ~r.

[
A(~p, ~q) ∧B(~p, ~r)

]
where

A∪B includes all Boolean axioms, and where the coefficients of ~p are either all non-negative
in A or are all non-positive in B. If F has a CP+∀red-proof π, of length l, then we can
extract a monotone real circuit C of size polynomial in l and the number n of ~p variables in
F , such that C computes a Boolean function, and on any 0, 1 assignment ~a to ~p,

C(~a) = 0 =⇒ Q~q.A(~a, ~q) is false, and
C(~a) = 1 =⇒ Q~r.B(~a,~r) is false.

Such a C is called a monotone real interpolating circuit for F .
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Proof. Let π = ∃~pQ~qQ~r. [I1, . . . , Il] be a CP+∀red refutation of F . The idea, as in [34], is
to associate with each inequality

I ≡
∑
k

ekpk +
∑
i

fiqi +
∑
j

gjrj ≥ D

in π, two inequalities
I0 ≡

∑
i

fiqi ≥ D0, I1 ≡
∑
j

gjrj ≥ D1

depending on the Boolean assignment ~a to the ~p variables, in such a way that
I0 and I1 together imply I|~a. (It suffices to ensure D0 +D1 ≥ D −

∑
k

ekak.)

I0 can be derived solely from the Q~q.A(~a, ~q) part in CP+∀red.
I1 can be derived solely from the Q~r.B(~a,~r) part in CP+∀red.

Then the inequalities corresponding to the last step of the proof, Il, are 0 ≥ D0 and 0 ≥ D1,
with D0 +D1 ≥ 1. Hence D0 > 0 =⇒ ~Q~q.A(~a, ~q) is false, and D1 > 0 =⇒ ~Q~r.B(~a,~r) is
false. Note that we only need to compute one of the values D0, D1 to identify a false part of
F . Furthermore, we will show that if all the coefficients ek in B(~p, ~r) are non-positive, then
D1 can be computed by a real monotone circuit of size O(nl). If all the coefficients ek in
A(~p, ~q) are non-negative, then we will show that −D0 can be computed by a real monotone
circuit of size O(nl). (The inputs to the circuit are an assignment ~a to the ~p variables.)
Applying the unary non-decreasing threshold function D1 > 0? or −D0 ≥ 0? to its output
will then give a monotone real interpolating circuit for F .

We first describe the computation of D0 and D1 at each inequality. These are computed
by two circuits, both of which have exactly the structure of π.

Consider the case when all ek in B(~p, ~r) are non-positive; the other case is analogous. All
axioms are considered as either A-axioms or as B-axioms. The Boolean axioms concerning ~p
variables are treated as A-axioms in this case.

The computation of D0 and D1 proceeds bottom-up as described below.

How inequality I is obtained D0 D1

Axioms:
pk ≥ 0 −ak 0
−pk ≥ −1 ak − 1 0
−qi ≥ −1 −1 0
−rj ≥ −1 0 −1
qj ≥ 0 or rj ≥ 0 0 0∑

k
ekpk +

∑
fiqi ≥ D D −

∑
ekak 0∑

k
ekpk +

∑
gjrj ≥ D 0 D −

∑
ekak

Arithmetic:
Addition I = I ′ + I ′′ D′

0 + D′′
0 D′

1 + D′′
1

Multiplication I = hI ′, h > 0 h×D′
0 h×D′

1

Division I = I ′/c, c > 0
⌈

D′
0

c

⌉ ⌈
D′

1
c

⌉
Reduction: I = I ′ |u=b; coefficient of u in I ′ is h.
h > 0 D′

0 D′
1

h < 0 and u is a ~q variable D′
0 − h D′

1

h < 0 and u is an ~r variable D′
0 D′

1 − h

As in the proof argument from [34], a straightforward induction shows that with these
computations, at each proof line I, the inequalities I0 and I1 together imply I |~a, and that
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each I0 can be derived from the A-axioms alone and each I1 can be derived from the B-axioms
alone.

All the operations required for the arithmetic and reduction steps compute non-decreasing
functions. At the axioms, note that the dependence of the D1 values on the assignment values
~a is always with non-negative coefficients −ek; hence these functions are also non-decreasing.
Thus we obtain a monotone real circuit for D1, of size O(nl). J

Missing details and proofs from Section 6

Example with universal quantifiers separating Q-Res, QU-Res from CP+∀red: In [8]
it has been shown that the false QBFs KBKF(t), introduced in [29], are hard for Q-Res.
However, they are known to have a polynomial-size proofs in QU-Res, and by Lemma 7 in
CP+∀red as well; thus they separate Q-Res from CP+∀red.

Consider the family of false QBFs from [20], which we denote as Q-PHPn. The formula
is based on the pigeon hole principle but has universal quantifiers, and is shown in [20] to be
hard for Q-Res. We observe that it is also hard for QU-Res, but easy for CP+∀red, providing
another example separating QU-Res from CP+∀red.

The formula Q-PHPn is define as follows: let CPHPXn
n be the false CNF formula encoding

pigeon hole principle on n+1 pigeon and n holes, and over the variables in Xn = {x1, . . . , xn}.
To be precise,

CPHPXn
n =

n+1∧
i=1

(
n∨
j=1

xi,j)

 ∧
 n∧
j=1

∧
1≤i1<i2≤n+1

(¬xi1,j ∨ ¬xi2,j)


Now define

DPHPXn
n = ¬CPHPXn

n

Clearly DPHPXn
n ∈ TAUT and is in DNF. Consider the following formula:

∃Xn∀Yn.DPHPYn
n ∧ CPHPXn

n

with Yn∩Xn = ∅. This is a false QBF because CPHPXn
n is unsatisfiable. However the matrix

of the formula is not in CNF. We define Q-PHPn to be the equivalent of the above formula
where the matrix is in CNF form. In [20], the DNF formula DPHPYn

n is encoded into an
equivalent CNF formula TPHPYn,Zn

n using additional variables ~Z, disjoint from Xn and Yn.
To be precise,

Q-PHPn = ∃Xn∀Yn∃Zn.TPHPYn, ~Z
n ∧ CPHPXn

n

with DPHPYn
n ≡ ∃~Z.TPHPYn, ~Z

n and TPHPYn, ~Z
n in CNF.

Q-PHPn is hard for Q-Res and QU-Res [20], but easy for CP+∀red: no resolution step
is possible between the clauses from TPHPYn, ~Z

n and CPHPXn
n , as the variable sets are disjoint.

Also the refutation is possible only from the clauses of CPHPXn
n , as ∀Yn∃ZnTPHPYn, ~Z

n is
true. Since all the variables in Xn are existential, the claim follows directly from the hardness
result of the pigeon hole principle for resolution [27], and the fact that the pigeon hole
principle is easy for the Cutting-plane proof system [19, Proposition 7].

Theorem 19. Frege+∀red is exponentially stronger than CP+∀red:
Frege+∀red p-simulates CP+∀red, whereas CP+∀red does not simulate Frege+∀red.

Proof. Frege+∀red p-simulates CP+∀red: Let ϕ be a false formula ϕ = Qx0 · · · QxN−1. [C1∧
· · · ∧ Cm], and let F denote its standard encoding as described in Definition 2. Fix any
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CP+∀red proof π = Qx0 · · · QxN−1. [I1, I2, . . . , Im] of F . By Lemma 5, we can assume that
π is in normal form. We need to represent each inequality I as a propositional formula
Rep(I), such that on each assignment α to the Boolean variables, Rep(I)(α) is 1 if and only
if I|α is 1. We do this almost exactly as in [24].

We know that integer arithmetic is in NC1. Thus, for a string of (n + 1)L Boolean
variables ỹ representing the bits of n+ 1 signed integers a1, a2, . . . , an, b with bit length L
each, and n Boolean variables x1, . . . , xn, there is a formula F of size polynomial in n+ L

(and depth logarithmic in nL) such that on any assignment, F is true exactly when the
inequality

∑
i aixi ≥ b is satisfied. To represent a specific inequality I :

∑
i aixi ≥ b, we

append to the leaves of F labeled from ỹ subformulas of the form x ∨ x̄ or x ∧ x̄ depending
on the bits of the ai’s and b. The resulting formula has the variables x1, . . . , xn and is the
representation Rep(I).

Our simulating Frege+∀red proof will have the structure

π1,Rep(I1), π2,Rep(I2), . . . , πm,Rep(Im), πm+1, false

where each πi is a sequence of formulas. That is, the simulating Frege+∀red proof is a
sequence of formulas containing the subsequence

Rep(I1),Rep(I2), . . . ,Rep(Im), false

For each axiom clause C, we need to derive the formula Rep(R(C)) by a short (polynomial
in n) Frege+∀red proof. Furthermore, inside Rep(R(C)), there will be explicit sub-formulas
representing the bits of each coefficient, aij and bj for i ∈ [n], j ∈ [L]. (To handle carry
overflows, we pad each coefficient with 0s to length θ(L) as in [24].) There will also be
explicit sub-formulas for each aij ∧ xi.

We also need to derive each Rep(It) from Rep(Ij), j < t, via short (polynomial in the
size of proof π) Frege+∀red proofs.

The addition rule, multiplication rule, and the division rule can be simulated as in the
classical case [24]: since integer arithmetic is in NC1, we have small formulas G expressing
the coefficients of the resulting inequality I from the used inequalities I ′ and I ′′. A Frege
style proof can describe how values from the subformulas in Rep(I ′) and Rep(I ′′) propagate
through G to bits equivalent to the corresponding input bits of Rep(I).

Now we show the ∀-red step simulation.
Suppose the inequality Ik is obtained from Ij for some j < k by applying the ∀-red

rule, reducing universal variable u. Clearly, u is the rightmost variable in Ij with nonzero
coefficient hu. Inductively, we have already derived F → Rep(Ij). Let bu = 0 if hu > 0,
otherwise bu = 1. We need to instantiate u in Rep(Ij) with bu. But u is not the rightmost
variable in Rep(Ij). However, for each variable v to the right of u, we know that the coefficient
av of v in Ij is 0, and hence the sub-formulas evaluating to the bits avj , as well as the
sub-formulas evaluating avj ∧ v, are all 0. In Frege+∀red, we can transform the pair of
sub-formulas, avj ∧ v, and avj ≡ 0, to the subformula avj ∧ 0, and thus eliminate v (note that
v does not figure anywhere else in the formula). Once this is done for all variables right of u,
we have the formula R in which the ∀-reduction step is valid in Frege+∀red. Performing this
reduction gives the formula R′ = R |u=bu

. Now, a short Frege proof can allow us to derive
Rep(Ij |u=bu

) = Rep(Ik). To see why such a proof exists, consider the case bu = 0. Inside R′
we have subformulas for the bits huj of the coefficient hu of u, and bits for huj ∧ u, and at u
we have attached a subformula evaluating to 0. What we want is subformulas where u is
still free, but the bits of the new coefficient of u are all 0. That is, from huj ∧ u and u ≡ 0,
we want to derive 0 ∧ u (the reverse of what we did before the reduction for later variables
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v). This is easy in Frege+∀red. The case when bu = 1 is similar, with the added task of
subtracting hu from the right-hand-side. This too can be tracked using an NC1 formula for
subtraction.

CP+∀red does not simulate Frege+∀red. Since Frege is exponentially more powerful
than Cutting Planes over propositional formulas (as witnessed by the clique-colour formulas
[34], see also Section 5), CP+∀red cannot simulate Frege+∀red. J

Theorem 20. There is a Φn,k ∈ CliqueCoCliquen,k of size polynomial in n, with a
Frege+∀red proof of size polynomial in n.

Proof. Fix positive integers n (indicating the number of vertices of the graph) and k ≤ n

(indicating the size of the clique queried) and let ~p be the set of variables {puv | 1 ≤ u < v ≤ n}.
An assignment to ~p picks a set of edges, and thus an n-vertex graph that we denote G~p.

The formula Q~q. An,k(~p, ~q) should express the property Clique(n, k), that G~p has a
clique of size k, and Q~r. Bn,k(~p, ~r) should express the property co-Clique(n, k).

Let ~q be the set of variables {qiu | i ∈ [k], u ∈ [n]}. We use the following clauses.

Ci = qi1 ∨ · · · ∨ qin for i ∈ [k]
Di,j,u = ¬qiu ∨ ¬qju for i, j ∈ [k], i < j and u ∈ [n]
Ei,u,v = ¬qiu ∨ ¬qiv for i ∈ [k] and u, v ∈ [n], u < v

Fi,j,u,v = ¬qiu ∨ ¬qjv ∨ puv for i, j ∈ [k], i < j and u 6= v ∈ [n].

We can now express Clique(n, k) as a polynomial-size QBF ∃~q.An,k(~p, ~q), where

An,k(~p, ~q) =
∧
i∈[k]

Ci ∧
∧

i<j,u∈[n]

Di,j,u ∧
∧

i∈[k],u<v

Ei,u,v ∧
∧

i<j,u 6=v
Fi,j,u,v.

Here the edge variables ~p appear only positively in An,k(~p, ~q).
Likewise co-Clique(n, k) can be written as a QBF ∀~r∃~t.Bn,k(~p, ~r,~t) of polynomial size.

In [9] one way of doing so is described. We describe here a somewhat different and more
transparent encoding. This encoding can be used to obtain the results of [9] as well, and
is more convenient for us here because it allows us to obtain a short Frege+∀red proof.
For ~r, we have a variable riu for every variable qiu and we let the set of variables of ~t
be {tK | K ∈ An,k} ∪ {t}. For each clause K in An,k(~p, ~q), we include an equivalence
tK ↔ K[riu/qiu] in Bn,k(~p, ~r,~t), which we represent as a set of clauses. We also introduce
clauses for t↔

∧
K∈An,k

tK , i.e., t indicates whether the ~r variables encode a clique. Because
we want to represent the co-clique formula we also include ¬t in Bn,k(~p, ~r,~t), which yields
the CNF formula co-Clique(n, k) = ∀~r∃~t.Bn,k(~p, ~r,~t).

Our clique-co-clique formulas Φn,k are ∃~p∃~q∀~r∃~t.An,k(~p, ~q) ∧Bn,k(~p, ~r,~t). We now show
that these formulas are easy in Frege+∀red.

We use a result from [12, Theorem 8.1] which shows that a Frege+∀red super-polynomial
lower bound must either come from a circuit lower bound or a classical Frege lower bound.
More precisely, if false QBFs Φn do not admit polynomial-size Frege+∀red proofs, then either
the universal player does not have NC1 winning strategies for the universal variables, or if
small NC1 winning strategies exist, then the propositional formulas obtained by substituting
the NC1 circuits for universal variables in Φn are hard for classical Frege.

In the case of the clique co-clique formulas Φn,k there exist short winning strategies for
the universal player, namely ~r = ~q. To see this, we just need to consider the case where
the existential player chooses a graph ~p that contains a k-clique exhibited in the ~q-variables,
because otherwise the universal player immediately wins on An,k(~p, ~q). In this case, choosing
~r = ~q ensures that Bn,k(~p, ~r,~t) fails as ~r indeed is a k-clique.
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Substituting these winning strategies into Φn,k, we obtain the false propositional formulas
An,k(~p, ~q) ∧Bn,k(~p, ~q,~t), which admit short Frege refutations.

Using this intuition we can refute Φn,k in Frege+∀red with short proofs. For this
we first derive the tautology ¬(An,k(~p, ~q) ∧ Bn,k(~p, ~q,~t)) by demonstrating a way to find
a contradiction in An,k(~p, ~q) ∧ Bn,k(~p, ~q,~t). To do this we observe that for any clause
K ∈ An,k(~p, ~q), we have the equivalences (tK ↔ K) ∈ Bn(~p, ~q,~t), so we derive all tK . Then,
because (t↔

∧
K∈An,k

tK) ∈ Bn,k(~p, ~q,~t), we obtain t. This means that with ¬t ∈ Bn,k(~p, ~q,~t)
we have a contradiction, thus proving the negation ¬(An,k(~p, ~q) ∧Bn,k(~p, ~q,~t)).

Moving forward to the next step, we derive in (polynomially many) Frege steps the
implication

∧
i∈[k],j∈[(n

2)](qi,j ↔ ri,j)→ ¬(An,k(~p, ~q) ∧Bn(~p, ~r,~t)), from which together with
the axiom An(~p, ~q) ∧Bn(~p, ~r,~t) we derive the disjunction

∨
i∈[k],j∈[(n

2)](ri,j 6= qi,j).
Now we perform ∀-reduction, starting with the rightmost universal variable ri1,j1 and

instantiating it with both 0 and 1. Thus we obtain two lines:

(0 6= qi1,j1) ∨
∨

i∈[k],i6=i1,j∈[(n
2)],j 6=j1

(ri,j 6= qi,j)

(1 6= qi1,j1) ∨
∨

i∈[k],i6=i1,j∈[(n
2)],j 6=j1

(ri,j 6= qi,j)

We then use the tautology (qi1,j1 ↔ 0)∨ (qi1,j1 ↔ 1) and the two instantiations to remove
the disjunct (ri1,j1 6= qi1,j1) from the disjunction. Continuing this iteratively, we remove all
disjuncts and are left with the empty disjunct, hence refuting Φn,k in polynomial size. J

Note that if we changed the quantification and used formula ∃~p∀~r∃~t∃~q.An,k(~p, ~q) ∧
Bn,k(~p, ~r,~t) we would still be describing the same contradiction between clique and co-clique.
However the above argument would not work for finding short Frege+∀red proofs. This
is because the strategies of the universal player cannot refer to the choices of ~r (since the
universal player is restricted to using variables that appear left of the variable in question)
but instead has to describe a k-clique expressed as the ~r variables whenever the existential
player makes on in the graph variables. However the strategies that determine these clique
are restricted to the ~p graph variable. Since cliques can be checked easily when found, they
means that the universal strategies compute the NP-complete Clique(n, k) problem. So
strategies are conjectured to be hard unless NP ⊆ NC1. Because of the strategy extraction
theorem from [6] NP ⊆ NC1 will be a necessary condition for these modified formulas to have
short proofs in Frege+∀red.

Missing proofs from Section 7

Theorem 22. SemCP+∀red admits monotone real feasible interpolation for false QBFs.

Proof. Let ϕ = ∃~pQ~qQ~r(A′(~p, ~q) ∧ B′(~p, ~r)) be a false QBF formula. Without loss of
generality, the ~p variables appear only negatively in B′(~p, ~r). Consider the standard encoding
F = ∃~pQ~qQ~r(A(~p, ~q) ∧B(~p, ~r)) of ϕ (see Definition 2). Clearly the coefficient of ~p variables
in B are non-positive. As discussed before it is sufficient to extract a monotone real feasible
interpolation for F . Let π be any semCP+∀red proof of F , and as in the proof of Theorem 13,
we construct a real monotone interpolating C to detect whether D1 > 0. Axioms and the
∀-reduction rule are handled exactly as in Theorem 13. Now suppose that the inequality
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I ≡
∑
k

ekpk +
∑
i

fiqi +
∑
j

gjrj ≥ D is semantically inferred from I ′ and I ′′. We define I0, I1

by defining D0 and D1.

D0 = min
{∑

i

fiqi|γ : γ ∈ {0, 1}|~q|, γ satisfies I ′0, I ′′0

}

D1 = min

∑
j

gjrj |τ : τ ∈ {0, 1}|~r|, τ satisfies I ′1, I ′′1


It suffices to show that D0 +D1 ≥ D −

∑
k

ekak. For D0, let the minimum be achieved at

assignment γ0, and for D1, let the minimum be achieved at assignment τ1. Let ρ be the
assignment to the ~q and ~r variables setting ~q as in γ0 and ~r as in τ1. Then ρ satisfies I ′0, I ′′0 ,
I ′1, I ′′1 (at ~p = ~a). Hence by induction, ρ satisfies I ′ and I ′′. Since I is inferred semantically
from I ′ and I ′′, ρ satisfies I as well. Hence

D0+D1 =
∑
i

fiqi|γ0 +
∑
j

gjrj |τ1 =

∑
i

fiqi +
∑
j

gjrj

 |ρ ≥ D−∑
k

ekak, as required.

Since ~p appears only negatively in B(~p, ~r), D1 is a non-decreasing function of D′1 and D′′1 .
(As the values of D′1 and D′′1 increase, the set of assignments τ over which we take the
minimum shrinks, and so the minimum value can only increase or stay the same.) J

The proof of Theorem 22 goes through even if the quantified set of linear inequalities F
are of the form defined in Theorem 13, not just those arising from false QBFs. Therefore
similar to Theorem 13, semCP+∀red also admits monotone real feasible interpolation for
inequalities.
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