
A Tight Karp-Lipton Collapse Result in
Bounded Arithmetic

OLAF BEYERSDORFF

Institut für Theoretische Informatik, Leibniz-Universität Hannover, Germany

and

SEBASTIAN MÜLLER

Institut für Informatik, Humboldt-Universität zu Berlin, Germany

Cook and Kraj́ıček have recently obtained the following Karp-Lipton collapse result in bounded
arithmetic: if the theory PV proves NP ⊆ P/poly, then the polynomial hierarchy collapses to the
Boolean hierarchy, and this collapse is provable in PV . Here we show the converse implication,
thus answering an open question posed by Cook and Kraj́ıček. We obtain this result by formalizing
in PV a hard/easy argument of Buhrman, Chang, and Fortnow.

In addition, we continue the investigation of propositional proof systems using advice, initiated
by Cook and Kraj́ıček. In particular, we obtain several optimality results for proof systems using
advice. We further show that these optimal systems are equivalent to natural extensions of Frege
systems.

Categories and Subject Descriptors: F.1.3 [Complexity Measures and Classes]: Relations
among Complexity Classes; F.2.2 [Nonnumerical Algorithms and Problems]: Complexity of
proof procedures; F.4.1 [Mathematical Logic]: Computational Logic

General Terms: Theory

Additional Key Words and Phrases: Karp-Lipton Theorem, Advice, Optimal Propositional Proof
Systems, Bounded Arithmetic, Extended Frege

1. INTRODUCTION

The classical Karp-Lipton Theorem states that NP ⊆ P/poly implies a collapse of
the polynomial hierarchy PH to its second level [Karp and Lipton 1980]. Subse-
quently, these collapse consequences have been improved by Köbler and Watanabe
[1998] to ZPPNP and by Sengupta and Cai to Sp

2 (cf. [Cai 2007]). This currently
forms the strongest known collapse result of this kind.

Recently, Cook and Kraj́ıček [2007] have considered the question which collapse
consequences can be obtained if the assumption NP ⊆ P/poly is provable in some
weak arithmetic theory. This assumption seems to be stronger than in the classical

Email addresses: beyersdorff@thi.uni-hannover.de, smueller@informatik.hu-berlin.de
This research was supported by DFG grants KO 1053/5-1 and KO 1053/5-2.
An extended abstract of this article appeared in the Proceedings of the 17th Annual Conference on
Computer Science Logic (CSL). Lecture Notes in Computer Science, vol. 5213. Springer-Verlag,
Berlin Heidelberg, 199 – 214.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/YY/00-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY, Pages 1–22.

2 · O. BEYERSDORFF and S. MÜLLER

Karp-Lipton results, because in addition to the inclusion NP ⊆ P/poly we require
an easy proof for it. In particular, Cook and Kraj́ıček showed that if NP ⊆ P/poly
is provable in PV , then PH collapses to the Boolean hierarchy BH, and this collapse
is provable in PV . For stronger theories, the collapse consequences become weaker.
Namely, if PV is replaced by S1

2 , then PH ⊆ PNP[O(log n)], and for S2
2 one gets

PH ⊆ PNP [Cook and Kraj́ıček 2007]. Still all these consequences are presumably
stronger than in Sengupta’s result above, because PNP ⊆ Sp

2.
Cook and Kraj́ıček [2007] ask whether under the above assumptions, their col-

lapse consequences for PH are optimal in the sense that also the converse implica-
tions hold. In this paper we give an affirmative answer to this question for the theory
PV . Thus PV proves NP ⊆ P/poly if and only if PV proves PH ⊆ BH. To show
this result we use the assertion coNP ⊆ NP/O(1) as an intermediate assumption.
Surprisingly, Cook and Kraj́ıček [2007] have shown that provability of this assump-
tion in PV is equivalent to the provability of NP ⊆ P/poly in PV . While such
a trade-off between nondeterminism and advice seems rather unlikely to hold un-
conditionally, Buhrman, Chang, and Fortnow [2003] proved that coNP ⊆ NP/O(1)
holds if and only if PH collapses to BH. Their proof in [Buhrman et al. 2003] refines
the hard/easy argument of Kadin [1988]. We formalize this technique in PV and
thus obtain that coNP ⊆ NP/O(1) is provable in PV if and only if PV proves
PH ⊆ BH. Combined with the mentioned results of Cook and Kraj́ıček [2007], this
implies that PV ` PH ⊆ BH is equivalent to PV ` NP ⊆ P/poly .

Let us remark that this result can also be obtained in a less direct way by com-
bining results of Zambella [1996] with recent advances of Jeřábek [2008]. The
alternative argument proceeds as follows:1 By a result of Zambella [1996] (cf. The-
orem 4.2), if PV proves PH ⊆ BH, then Buss’ hierarchy of arithmetic theories S2

collapses to PV . Recently, Jeřábek [2008] proved that the assumption S2 = PV
implies that PV ` coNP ⊆ NP/O(1). Using the above mentioned result by Cook
and Kraj́ıček [2007] it follows that PV ` NP ⊆ P/poly.

Comparing the two proofs, let us mention that Jeřábek’s proof yields a more
general result as it also holds for higher levels of the polynomial hierarchy (namely,
if T i

2 proves that the polynomial hierarchy collapses to the Boolean hierarchy over
Σp

i+1, then T i
2 proves Σp

i+1 ⊆ ∆p
i+1/poly , cf. [Jeřábek 2008]). On the other hand,

Jeřábek’s result is reached via a new sophisticated and quite elaborate technique
called ”approximate counting by hashing”, whereas our direct proof for the base
case i = 0 is conceptually much more straightforward (it also uses the mentioned
result of Zambella, though).

In addition, using Jeřábek’s result one can even obtain the consequence PV `
NP ⊆ P/poly under the assumption PV ` PH ⊆ Σp

2, which at first sight seems
to be weaker than PV ` PH ⊆ BH. This is so, because Zambella [1996] actually
establishes PV ` PH ⊆ Σp

2 as a sufficient condition for the collapse S2 = PV . Thus
we conclude that PV proves PH ⊆ BH if and only if PV proves PH ⊆ Σp

2. This
is interesting, as such a result is not known to hold without reference to bounded
arithmetic.

In summary, combining our results with previous results from [Cook and Kraj́ıček

1We are grateful to an anonymous referee of the conference version of this paper for supplying
this alternative argument.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 3

2007; Jeřábek 2008; Zambella 1996], we obtain that provability in PV of each of
the following four things is equivalent to the other three:

(1) NP ⊆ P/poly,
(2) coNP ⊆ NP/O(1),
(3) PH = BH, and
(4) PH = Σp

2.

Assumptions of the form coNP ⊆ NP/O(1) play a dominant role in the above
Karp-Lipton results. These hypotheses essentially ask whether advice is helpful to
decide propositional tautologies. Motivated by this observation, Cook and Kraj́ıček
[2007] started to investigate propositional proof systems taking advice. In the sec-
ond part of this paper we continue this line of research. We give a quite general
definition of functional propositional proof systems with advice. Of particular in-
terest are those systems where the advice depends on the proof (input advice) or
on the proven formula (output advice).

In our investigation we focus on the question whether there exist optimal proof
systems for different advice measures. While the existence of optimal propositional
proof systems without advice is a long-standing open question, posed by Kraj́ıček
and Pudlák [1989], Cook and Kraj́ıček [2007] proved that there is a system with
one bit of input advice which is optimal for all systems using up to logarithmically
many advice bits. On the negative side, we show that this cannot be improved
to a p-optimality result, where the simulation is computed in polynomial time
without usage of advice. To obtain positive results in the spirit of p-optimality, we
propose the less restrictive notion of a p-optimal machine, that allows the advice-
free simulation of all systems from the respective class by one machine which,
however, is allowed to use variable advice. By extending the proof method of Cook
and Kraj́ıček [2007], we obtain p-optimal machines for each class of proof systems
with super-logarithmic advice.

These optimality results only leave open the question whether the classes of proof
systems with constant advice admit p-optimal machines. We prove that for each
constant k, there is a machine which p-simulates all systems with k advice bits,
but itself uses k + 1 bits of advice. We also use a technique of Sadowski [2002] to
show that the existence of p-optimal proof systems for SAT2 implies the existence
of p-optimal machines using k advice bits for each constant k.

In contrast to the optimality results for input advice, we show that we cannot
expect similar results for proof systems with output advice, unless PH ⊆ BH already
implies PH ⊆ DP.

Finally, we consider classical proof systems like resolution or Frege systems using
advice. We show that the optimal proof systems with advice are equivalent to
extensions of Frege systems, thus demonstrating that these optimal proof systems
admit a robust and meaningful definition.

2. PRELIMINARIES

Let Σ = {0, 1}. Σn denotes the set of strings of length n and (Σn)k the set of
k-tuples of Σn. Let πi :

⋃
n∈N(Σ

∗)n → Σ∗ be the projection to the ith string of
some finite tuple and let π∗i : Σ∗ → {0, 1} be the projection to the ith bit of a string.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

4 · O. BEYERSDORFF and S. MÜLLER

As usual we enumerate the bits of a string starting with 0 and thus for example
π∗0(a0a1a2) = a0.

Let 〈·〉 be a polynomial-time computable function, mapping tuples of strings to
strings. Its inverse will be denoted by enc.

2.1 Complexity Classes

We assume familiarity with standard complexity classes (cf. [Balcázar et al. 1988]).
In particular, we will need the Boolean hierarchy BH which is the closure of NP
under union, intersection, and complementation. The levels of BH are denoted
BHk and are inductively defined by BH1 = NP and

BHk+1 = {L1 \ L2 | L1 ∈ NP and L2 ∈ BHk} .

The second level BH2 is also denoted by Dp. The Boolean hierarchy coincides with
PNP[O(1)], consisting of all languages which can be solved in polynomial time with
constantly many queries to an NP-oracle. For each level BHk it is known that k
non-adaptive queries to an NP-oracle suffice, i.e., BHk ⊆ P

NP[k]
tt (cf. [Beigel 1991]).

Complete problems BLk for BHk are inductively given by BL1 = SAT and

BL2k = {〈x1, . . . , x2k〉 | 〈x1, . . . , x2k−1〉 ∈ BL2k−1 and x2k ∈ SAT}
BL2k+1 = {〈x1, . . . , x2k+1〉 | 〈x1, . . . , x2k〉 ∈ BL2k or x2k+1 ∈ SAT} .

Observe that 〈x1, . . . , xk〉 ∈ BLk if and only if there exists an i ≤ k, such that xi is
satisfiable and the largest such i is odd.

Complexity classes with advice were first considered by Karp and Lipton [1980].
For each function h : N→ Σ∗ and each language L we let

L/h = {x | 〈x, h(|x|)〉 ∈ L} .

If C is a complexity class and F is a class of functions, then C/F = {L/h | L ∈
C, h ∈ F}. Usually the family of functions F is defined by some bound on the
length of the values in terms of the argument. Thus, for example, NP/O(1) denotes
the class of languages recognized by NP machines with advice functions h where
|h(n)| is bounded by a constant (cf. [Balcázar et al. 1988]).

2.2 Propositional Proof Systems

Propositional proof systems were defined in a general way by Cook and Reckhow
[1979] as polynomial-time computable functions P which have as their range the
set of all tautologies. A string π with P (π) = ϕ is called a P -proof of the tautology
ϕ. Equivalently, propositional proof systems can be defined as polynomial-time
computable relations P (π, ϕ) such that ϕ is a tautology if and only if (∃π)P (π, ϕ)
holds. A propositional proof system P is polynomially bounded if all tautologies
have polynomial size P -proofs.

Proof systems are compared according to their strength by simulations introduced
by Cook and Reckhow [1979] and Kraj́ıček and Pudlák [1989]. A proof system S
simulates a proof system P (denoted by P ≤ S) if there exists a polynomial p such
that for all tautologies ϕ and P -proofs π of ϕ there is an S-proof π′ of ϕ with
|π′| ≤ p (|π|). If such a proof π′ can even be computed from π in polynomial time
we say that S p-simulates P and denote this by P ≤p S. If the systems P and S

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 5

mutually (p-)simulate each other, they are called (p-)equivalent. A proof system is
called (p-)optimal if it (p-)simulates all proof systems.

A prominent class of propositional proof systems is formed by extended Frege
systems EF which are usual textbook proof systems based on axioms and rules,
augmented by the possibility to abbreviate complex formulas by propositional vari-
ables to reduce the proof size (cf. [Cook and Reckhow 1979; Kraj́ıček 1995]).

3. REPRESENTING COMPLEXITY CLASSES BY BOUNDED FORMULAS

The relations between computational complexity and bounded arithmetic are rich
and varied, and we refer to [Kraj́ıček 1995; Cook and Nguyen 2009] for background
information. Here we will use the two-sorted formulation of arithmetic theories
[Cook 2005; Cook and Nguyen 2009]. In this setting we have two sorts: numbers
and finite sets of numbers, which are interpreted as strings. Number variables
will be denoted by lower case letters x, y, n, . . . and string variables by upper case
letters X,Y, . . . The two-sorted vocabulary includes the symbols +, ·,≤, 0, 1, and
the function |X| for the length of strings.

Our central arithmetic theory will be the theory VPV , which is the two-sorted
analogue of Cook’s PV [Cook 1975]. In addition to the above symbols, the language
of VPV contains names for all polynomial-time computable functions (where the
running time is measured in terms of the length of the inputs with numbers coded
in unary). The theory VPV is axiomatized by definitions for all these functions as
well as by the number induction scheme for open formulas.

Bounded quantifiers for strings are of the form (∀X ≤ t)ϕ and (∃X ≤ t)ϕ,
abbreviating (∀X)(|X| ≤ t→ ϕ) and (∃X)(|X| ≤ t ∧ ϕ), respectively (where t is a
number term not containing X). We use similar abbreviations for = instead of ≤.
By counting alternations of quantifiers, a hierarchy ΣB

i , ΠB
i of bounded formulas is

defined. The first level ΣB
1 contains formulas of the type (∃X1 ≤ t1) . . . (∃Xk ≤ tk)ϕ

with only bounded number quantifiers occurring in ϕ. Similarly, ΠB
1 -formulas are

of the form (∀X1 ≤ t1) . . . (∀Xk ≤ tk)ϕ.
As we want to investigate the provability of various complexity-theoretic assump-

tions in arithmetic theories, we need to formalize complexity classes within bounded
arithmetic. To this end we associate with each complexity class C a class of arith-
metic formulas FC. The formulas FC describe C, in the sense that for each A ⊆ Σ∗

we have A ∈ C if and only if A is definable by an FC-formula ϕ(X) with a free
string variable X.

It is well known that ΣB
1 -formulas describe NP-sets in this sense, and this con-

nection extends to the formula classes ΣB
i and ΠB

i and the respective levels Σp
i and

Πp
i of the polynomial hierarchy. Given this connection, we can model the levels

BHk of the Boolean hierarchy by formulas of the type

ϕ1(X) ∧ ¬(ϕ2(X) ∧ . . .¬(ϕk−1(X) ∧ ¬ϕk(X)) . . .) (1)

with ΣB
1 -formulas ϕ1, . . . , ϕk.

Another way to speak about complexity classes in arithmetic theories is to con-
sider complete problems for the respective classes. For the satisfiability problem
SAT we can build an open formula Sat(T,X), stating that T codes a satisfying
assignment for the propositional formula coded by X. In VPV we can prove that
(∃T ≤ |X|)Sat(T,X) is NP-complete, in the sense that every ΣB

1 -formula ϕ is
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

6 · O. BEYERSDORFF and S. MÜLLER

provably equivalent to (∃T ≤ t(|X|)Sat(T, Fϕ(X)) for some polynomial-time com-
putable function Fϕ and an appropriate number term t.

Using this fact, we can express the classes BHk in VPV equivalently as:

Lemma 3.1. For every formula ϕ describing a language from BHk as in (1) there
is a polynomial-time computable function F : Σ∗ → (Σ∗)k such that VPV proves
the equivalence of ϕ and

(∃T1, T3, . . . , T2·bk/2c+1 ≤ t)(∀T2, T4, . . . , T2·bk/2c ≤ t)
(. . . ((Sat(T1, π1(F (X))) ∧ ¬Sat(T2, π2(F (X))))

∨Sat(T3, π3(F (X)))) ∧ · · · ∧k ¬k+1Sat(Tk, πk(F (X))))

(2)

where ∧k = ∧ if k is even and ∨ otherwise, ¬k = ¬ . . .¬ (k-times), and t is a
number term bounding |F (X)|. We will abbreviate (2) by BLk(F (X)).

Similarly, we can define the class P
NP[k]
tt by all formulas of the type

(∃T1 . . . Tk ≤ t)(Sat(T1, F1(X)) ∧ · · · ∧ Sat(Tk, Fk(X)) ∧ ϕ1(X)) ∨ · · · ∨
(∀T1 . . . Tk ≤ t)(¬Sat(T1, F1(X)) ∧ · · · ∧ ¬Sat(Tk, Fk(X)) ∧ ϕ2k(X))

(3)

where ϕ1, . . . , ϕ2k are open formulas, F1, . . . , Fk are polynomial-time computable
functions, and t is a number term bounding |Fi(X)| for i = 1, . . . , k. In (3), every
combination of negated and unnegated Sat-formulas appears in the disjunction.

With these arithmetic representations we can prove inclusions between complex-
ity classes in arithmetic theories. Let A and B be complexity classes represented
by the formula classes A and B, respectively. Then we use VPV ` A ⊆ B to
abbreviate that for every formula ϕA ∈ A there exists a formula ϕB ∈ B, such that
VPV ` ϕA(X) ↔ ϕB(X).

In the following, we will use the same notation for complexity classes and their
respective representations. Hence we can write statements like VPV ` PH ⊆ BH,
with the precise meaning explained above. For example, using Lemma 3.1 it is
straightforward to verify:

Lemma 3.2. For every number k we have VPV ` BHk ⊆ P
NP[k]
tt .

Finally, we will consider complexity classes that take advice. Let A be a class
of formulas. For a constant k ≥ 0, VPV ` A ⊆ NP/k abbreviates that, for every
ϕ ∈ A there exist ΣB

1 -formulas ϕ1, . . . , ϕ2k , such that

VPV ` (∀n)
∨

1≤i≤2k

(∀X) (|X| = n→ (ϕ(X) ↔ ϕi(X))) . (4)

Similarly, using the self-reducibility of SAT, we can formalize the assertion VPV `
NP ⊆ P/poly as

VPV ` (∀n)(∃C ≤ t(n))(∀X ≤ n)(∀T ≤ n)(Sat(T,X) → Sat(C(X), X))

where t is a number term and C(X) is a term expressing the output of the circuit
C on input X (cf. [Cook and Kraj́ıček 2007]).
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 7

4. THE KARP-LIPTON COLLAPSE RESULT IN VPV

In this section we will prove that, in VPV , the Karp-Lipton collapse PH ⊆ BH
of Cook and Kraj́ıček [2007] is optimal in the sense that VPV ` NP ⊆ P/poly is
equivalent to VPV ` PH ⊆ BH. We will use the following complexity-theoretic
theorem of Buhrman, Chang, and Fortnow [2003] to achieve the desired result.

Theorem 4.1 [Buhrman et al. 2003]. For every constant k we have coNP ⊆
NP/k if and only if PH ⊆ BH2k .

While the forward implication of Theorem 4.1 is comparatively easy and was
shown to hold relative to VPV by Cook and Kraj́ıček [2007], the backward impli-
cation was proven in [Buhrman et al. 2003] by a sophisticated hard/easy argument.
In the sequel, we will formalize this argument in VPV , thereby answering a ques-
tion of Cook and Kraj́ıček [2007], who asked whether VPV ` PH ⊆ BH already
implies VPV ` coNP ⊆ NP/O(1).

The assumption of a provable collapse of PH to BH also allows us to use stronger
tools in our arguments than are known to be available in VPV .

Theorem 4.2 [Zambella 1996]. If PV ` PH ⊆ BH, then PV = S2.

This enables us to use the bounded replacement principle and bounded minimiza-
tion properties which are presumably not available in VPV . The bounded re-
placement principle implies that each ΣB

i class, defined in terms of alternating
bounded string quantifiers, is up to provable equivalence closed under bounded
number quantifiers (in the paper, we only need this for ΣB

1 , so we only require ΣB
1

or equivalently ΣB
0 replacement, cf. [Cook and Nguyen 2009]). The bounded min-

imization principle states that if a bounded property is ever satisfied, then there
exists a lexicographically minimal satisfying element. We will frequently make use
of these principles and their consequences later on.

Assuming VPV ` PH ⊆ BH, we claim that there is some constant ` such that
VPV ` PH ⊆ BH`. This follows, because PH ⊆ BH implies PH = BH = Σp

2.
Therefore every problem in PH can be reduced to a fixed Σp

2-complete problem.
Since this problem is contained in some level BH` of BH, it can be reduced to an
appropriate BH`-complete problem as well. Thus PH ⊆ BH`.

Therefore, BH` is provably closed under complementation in VPV , i.e., there
exists a polynomial-time computable function h such that

VPV ` BL`(X1, . . . , X`) ↔ ¬BL`(h(X1, . . . , X`)) . (5)

Given such a function h, we define the notion of a hard sequence. This concept
was defined by Chang and Kadin [1996] as a generalization of the notion of hard
strings from [Kadin 1988]. Hard strings were first used to show that BH ⊆ Dp

implies a collapse of PH [Kadin 1988].

Definition 4.3. Let h be a polynomial-time computable function satisfying (5).
A sequence x̄ = (x1, . . . , xr) of strings is a hard sequence of order r for length
n, if x1, . . . , xr are unsatisfiable formulas of length n, and for all (` − r)-tuples
ū of formulas of length n, the formula π`−r+i(h(ū, x̄)) is unsatisfiable for each
i = 1, . . . , r.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

8 · O. BEYERSDORFF and S. MÜLLER

A hard sequence x̄ of order r for length n is not extendable if, for every unsat-
isfiable formula x of length n the sequence x_x̄ is not hard. Finally, a maximal
hard sequence is a hard sequence of maximal order.

Maximal hard sequences are obviously not extendable. Note that by definition,
the empty sequence is a hard sequence for every length.

To use this definition in VPV , we have to formalize the notions of hard sequences,
non-extendable hard sequences, and maximal hard sequences by bounded predicates
HS , NEHS , and MaxHS , respectively.

Definition 4.4. Let VPV ` BL`(X̄) ↔ ¬BL`(h(X̄)) for some polynomial-
time computable function h and every `-tuple X̄ of strings.

For r-tuples X of strings of length n, the following predicate HS `(X;n, r) ex-
presses that X is a hard sequence. HS `(X;n, r) is defined as

(∀i < r)(∀T ≤ n)¬Sat(T, πi+1(X)) ∧
(∀U ∈ (Σn)`−r)(∀i < r)(∀T ≤ n)(¬Sat(T, π`−r+i+1(h(U,X)))) .

Similarly, we formalize non-extendable hard sequences by the following predicate
NEHS `(X;n, r), defined as

HS `(X;n, r) ∧ (∀S = n)¬HS `(S_X;n, r + 1) .

Finally, maximal hard sequences are expressed via the following bounded formula
MaxHS `(X;n, r)

HS `(X;n, r) ∧ (∀S ∈ (Σn)r+1)¬HS `(S;n, r + 1) .

We remark that HS ` is a ΠB
1 -predicate, while NEHS ` and MaxHS ` are ΠB

2 -
formulas. Maximal hard sequences allow us to define the unsatisfiability of propo-
sitional formulas by a ΣB

1 -formula, as stated in the following lemma.

Lemma 4.5. Let h be a polynomial-time computable function which for some
constant ` satisfies (5). Then VPV proves the formula

(∀n)(∀X = n)(∀r < `)(∀H ∈ (Σn)`−r−1) (MaxHS `(H;n, `− r − 1) →
[(∀T ≤ n)¬Sat(T,X) ↔ (∃T ≤ n)(∃U ∈ (Σn)r)Sat(T, πr+1(h(U,X,H)))]) .

Proof. We will argue in the theory VPV . Let H ∈ (Σn)`−r−1 be given such
that MaxHS (H;n, `− r − 1) is fulfilled. Assume (∀T ≤ n)¬Sat(T,X). Then

(∀T ≤ n)(∀U ∈ (Σn)r)¬Sat(T, πr+1(h(U,X,H)))

implies ¬NEHS (H;n, ` − r − 1), which in turn implies ¬MaxHS (H;n, ` − r − 1).
Thus it holds that

(∃T ≤ n)(∃U ∈ (Σn)r)Sat(T, πr+1(h(U,X,H))) . (6)

On the other hand, assume that (6) holds. Then we obtain

(∀T ≤ n)¬Sat(T,X)

from BL`(X1, . . . , X`) ↔ ¬BL`(h(X1, . . . , X`)) in a straightforward calculation
showing that by the maximality of H, the formula X cannot be satisfiable if
πr+1(h(U,X,H)) is.
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 9

By the preceding lemma, given maximal hard sequences we can describe ΠB
1 -

formulas by ΣB
1 -formulas. Most of the proof of the main theorem (Theorem 4.8) will

go into the construction of such sequences. As we want to use a similar technique
as in Theorem 4.1, we will now only consider levels of the Boolean hierarchy that
are powers of 2. Thus we assume that ` = 2k for some k. It will turn out that,
assuming VPV ` PH ⊆ BH2k , we can construct 2k ΣB

1 -formulas, whose disjunction
decides the elements of a maximal hard sequence as in (4).

Therefore our aim is to give an NP/k definition of a maximal hard sequence. We
will give such a definition for a bitwise encoding of a maximal hard sequence below.

Definition 4.6. Let h be a polynomial-time computable function which for some
constant ` = 2k satisfies (5). We define the predicate HardSeqBits`,1(〈1n, i〉) by

(∃H ∈ (Σn)<`)[MaxHS `(H;n, |H|)∧
(∀S ∈ (Σn)<`)(MaxHS `(S;n, |S|) → 〈H〉 ≤lex 〈S〉) ∧ π∗i (〈H〉) = 1] .

Here ≤lex denotes the lexicographic ordering on the strings.
Analogously we define HardSeqBits`,0(〈1n, i〉) with a 0 substituted for the 1 in the

last line of the above formula.

Informally, HardSeqBits`,1(〈1n, i〉) holds, if the ith bit of the encoding of the
lexically smallest maximal hard sequence for length n is 1. HardSeqBits`,0(〈1n, i〉)
holds, if the ith bit of the encoding of the lexically smallest maximal hard sequence
for length n is 0. Observe that we need the ΠB

2 minimization principle, as stated
after Theorem 4.2, to prove the existence of such a minimal H. Let s`(n) be a
number term such that sequences with at most ` elements from Σn are coded by
strings of size ≤ s`(n) via the tupling function 〈·〉. We choose this function in such
a way that for all bit positions 1 ≤ i, j ≤ s`(n) we get |〈1n, i〉| = |〈1n, j〉|. Thus the
length of 〈1n, i〉 only depends on n.

Lemma 4.7. For every k, n, and i, if VPV ` PH ⊆ BH2k , then

VPV ` HardSeqBits2k,1(〈1n, i〉) ∈ NP/k .

The same holds for HardSeqBits2k,0.

Proof. We will only argue for HardSeqBits2k,1 as the proof for HardSeqBits2k,0

follows along the same lines. As HardSeqBits2k,1 is definable by a bounded formula,
the assumption VPV ` PH ⊆ BH2k together with Lemma 3.2 guarantees that
the predicate HardSeqBits2k,1(〈1n, i〉) is VPV -provably equivalent to the P

NP[2k]
tt -

formula
(∃T1 . . . T2k ≤ t`(n))
[Sat(T1, F1(〈1n, i〉)) ∧ · · · ∧ Sat(T2k , F2k(〈1n, i〉)) ∧ ϕ1(〈1n, i〉)] ∨

...
(∀T1 . . . T2k ≤ t`(n))
[¬Sat(T1, F1(〈1n, i〉)) ∧ · · · ∧ ¬Sat(T2k , F2k(〈1n, i〉)) ∧ ϕ22k (〈1n, i〉)] ,

(7)

for appropriate polynomial-time computable functions F1, . . . , F2k , open formulas
ϕ1, . . . , ϕ22k , and the VPV -number term t`(n) = |F1(〈1n, 1〉)|. By padding and

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

10 · O. BEYERSDORFF and S. MÜLLER

because |〈1n, i〉| is already determined by n, we can choose the Fj in such a way
that the size of the formulas Fj(〈1n, i〉) is also determined by n. Thus every formula
Fj(〈1n, i〉) is of size t`(n).

Our goal is to find ΣB
1 -formulas ψ0

HSB,1, . . . , ψ
2k−1
HSB,1, such that for every n there

is a z, such that for every i, HardSeqBits2k,1(〈1n, i〉) ↔ ψz
HSB,1(〈1n, i〉). Let Φ be

the set of all formulas Fj(〈1n, i〉) where i, n ≥ 0 and 1 ≤ j ≤ 2k. Since we have to
evaluate the Sat-formulas only for arguments from Φ, by the proof of Lemma 4.5
it suffices to consider only sequences H with elements from Φ. The parameter z in
the formulas ψz

HSB,1 will be the order of a maximal hard sequence for length n, if
we only allow formulas from Φ in the sequence.

Let now n be given and let H be a tuple of sequences with elements from Φ.
Assume further that H contains a hard sequence of order z. Then we can give
a ΣB

1 -formula ψz
HB,1(〈1n, i〉,H) that is VPV -equivalent to HardSeqBits2k,1(〈1n, i〉)

for every i of suitable length by ψz
HB,1(〈1n, i〉,H) =def

(∃I = 2k)(∀iH ≤ |H|)((|πiH
(H)| = z ∧HS 2k(πiH

(H);n, z)) → [

(∃Ū ∈ (Σt`(n))2
k−z−1)(∀j < 2k)(∃T ≤ t`(n))[

(π∗j (I) = 1 → Sat(T, Fj+1(〈1n, i〉))) ∧
(π∗j (I) = 0 → Sat(T, π2k−z(h(Ū , Fj+1(〈1n, i〉), πiH

(H))))) ∧
ϕ`(I)(X)]]) .

(8)

Here, ` is a polynomial-time computable function that takes I to the number of
the respective line in (7). I codes the satisfiability of that line, i.e., π∗j (I) = 1 if
and only if Fj(〈1n, i〉) is satisfiable. This is verified in lines 3 and 4 of (8) by a
maximal hard sequence. Line 5 then queries the appropriate ϕ`(I). The verification
is due to Lemma 4.5, because we only consider maximal hard sequences in line 4 (by
line 1 and the assumption that z is the proper advice). Observe that HS 2k is ΠB

1

and therefore, using replacement, ψz
HB,1 is equivalent to a ΣB

1 -formula. Abusing
notation we will identify ψz

HB,1 with its equivalent ΣB
1 -formula.

Due to (8) we will focus on the definition of such a tuple H of sequences, one
of which is maximal. First, observe that there are only few possible elements of
the sequences to be included in H. Namely, for each n there are just polynomially
many propositional formulas coded by the Fj(〈1n, i〉). Let pF (n) be a polynomial
bounding this number. Thus, there exist at most qF (n) = 2k · pF (n)2

k

sequences
of length at most 2k with elements among the Fj(〈1n, i〉). Therefore, even if H
contains all such sequences, it will still be polynomial in size. So, we will just give
a definition of H that guarantees that H contains every sequence of order less than
2k. Then H trivially contains every maximal hard sequence.

To this end let ψall(H) =def

(∃iε ≤ |H|)(ε = πiε(H)) ∧
(∀iH ≤ |H|)(∀iF ≤ pF (n))

(|πiH (H)| < 2k → (∃j ≤ |H|)Fp(iF)(〈1n, q(iF)〉)_πiH (H) = πj(H)) .

The formula ψall(H) states in the first line, that H includes the empty sequence
ε. The next two lines ensure that, if some sequence s in H does not have maximal
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 11

length, then H includes every sequence of the type Fj(〈1n, i〉)_s. Thus, H contains
every sequence of length less than 2k, in particular every maximal hard sequence.
Here, p and q are polynomial-time computable functions, such that Fp(i)(〈1n, q(i)〉)
is an enumeration of

F1(〈1n, 0〉), . . . , F1(〈1n, s2k(n)〉), . . . , F2k(〈1n, 0〉), . . . , F2k(〈1n, s2k(n)〉) .
By the arguments above, we can define HardSeqBits2k,1(〈1n, i〉) by using ψall(H)
in addition to ψz

HB,1(〈1n, i〉,H). Thus let ψz
HSB,1(〈1n, i〉) =def

(∃H ∈ ((Σt`(n))≤2k

)qF (n)) ψall(H) ∧ ψz
HB,1(〈1n, i〉,H) .

Then it holds, that

VPV ` (∀n)
∨

0≤z<2k

(∀i ≤ s2k(n))(HardSeqBits2k,1(〈1n, i〉) ↔ ψz
HSB,1(〈1n, i〉)))

which concludes the proof of the lemma.

The above lemma provides the appropriate tools to prove the converse implication
to the Karp-Lipton collapse result of Cook and Kraj́ıček [2007].

Theorem 4.8. If VPV ` PH ⊆ BH2k , then VPV ` coNP ⊆ NP/k.

Proof. Assuming VPV ` PH ⊆ BH2k , there exists a polynomial-time com-
putable function h, such that for tuples X̄ = (X1, . . . , X2k) we have VPV `
BL2k(X̄) ↔ ¬BL2k(h(X̄)). Thus, by Lemma 4.5, given a maximal hard sequence
for length n, we can define (∀T ≤ n)¬Sat(T,X) by a ΣB

1 -formula. In Lemma 4.7
we constructed such a sequence using k bits of advice.

Let ψz
HSB,1 be the ΣB

1 -formula from the proof of Lemma 4.7 and let ψz
HSB,0 be

its counterpart coding the zeros of the hard sequence.
By Lemma 4.7 the theory VPV proves the formulas

(∀n)
∨

0≤z<2k

(∀i ≤ s2k(n)) (HardSeqBits2k,j(〈1n, i〉) ↔ ψz
HSB,j(〈1n, i〉, Y))

for j ∈ {0, 1}. As in Lemma 4.7, z is the order of a maximal hard sequence for
length n. Observe that z, acting as the advice, can be nonuniformly obtained from
n.

Provided the right z, there is a ΣB
1 -formula EasyUnSatz(X) that, for every X of

length n, is VPV -equivalent to (∀T ≤ n)¬Sat(T,X). This is due to Lemma 4.5.
The formula EasyUnSatz(X) is defined as

(∃C ≤ s2k(|X|)) (∀i < |C|)[
∧

j∈{0,1}
(π∗i (C) = j → ϕz

HSB,j(〈1|X|, i〉, Y)) ∧

(∃T ≤ |X|)(∃Ū ∈ (Σ|X|)2
k−1−|enc(C)|) Sat(T, π2k−|enc(C)|(h(Ū ,X, enc(C))))] .

By the first line of this formula, C is the encoding of some maximal hard sequence.
As in Lemma 4.5, C is used to define ¬Sat by a ΣB

1 -formula (second line). Thus,
we have

VPV ` (∀n)
∨

0≤z<2k

(∀X = n)[(∀T ≤ n)¬Sat(T,X) ↔ EasyUnSatz(X)] .

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

12 · O. BEYERSDORFF and S. MÜLLER

This concludes the proof.

With this result we can now prove the optimality of the following Karp-Lipton
collapse result of Cook and Kraj́ıček [2007]:

Theorem 4.9 [Cook and Kraj́ıček 2007]. If VPV proves NP ⊆ P/poly, then
PH ⊆ BH, and this collapse is provable in VPV .

To show the converse implication, we use the following surprising trade-off be-
tween advice and nondeterminism in VPV :

Theorem 4.10 [Cook and Kraj́ıček 2007]. VPV ` NP ⊆ P/poly if and
only if VPV ` coNP ⊆ NP/O(1).

We remark that the proof of Theorem 4.10 uses strong witnessing arguments in
form of the Herbrand Theorem and the KPT witnessing theorem [Kraj́ıček et al.
1991]. Thus it seems unlikely that a similar result holds without assuming prov-
ability of NP ⊆ P/poly and coNP ⊆ NP/O(1) in some weak arithmetic theory.
Theorem 4.9 can be obtained as a consequence of Theorem 4.10 and a complexity-
theoretic proof of coNP ⊆ NP/O(1) ⇒ PH ⊆ BH (cf. [Buhrman et al. 2003; Cook
and Kraj́ıček 2007]).

Combining Theorems 4.8, 4.9, and 4.10 we can now state the optimality of the
Karp-Lipton collapse PH ⊆ BH in VPV .

Theorem 4.11. The theory VPV proves NP ⊆ P/poly if and only if VPV
proves that the polynomial hierarchy collapses to the Boolean hierarchy.

5. PROPOSITIONAL PROOF SYSTEMS WITH ADVICE

Motivated by the dominant role of the condition coNP ⊆ NP/O(1) in the above
arguments (cf. in particular Theorem 4.10 and its proof), Cook and Kraj́ıček [2007]
defined propositional proof systems with advice. In contrast to the classical setting
of [Cook and Reckhow 1979] where proof systems are computed by deterministic
polynomial-time Turing machines, Cook and Kraj́ıček [2007] allow the Turing ma-
chines to take advice. Cook and Kraj́ıček [2007] consider this model of computation
both in the functional and in the relational setting for propositional proof systems.
For both models, different concepts of proof systems with advice arise that not only
differ in the amount of advice, but also in the way the advice is used by the proof
system. In the following sections we continue the investigation of proof systems
with advice of Cook and Kraj́ıček [2007]. Before considering concrete proof systems
with advice, two interesting general questions appear in connection with this new
computational model: first, whether there exist optimal proof systems with advice
and second, whether there exist polynomially bounded proof systems in this model.
Here we will concentrate on the first question. Different complexity-theoretic char-
acterizations for the second question have been obtained in [Beyersdorff et al. 2009].

Our general model of computation for functional proof systems with advice is a
Turing transducer with several tapes: an input tape containing the proof, possibly
several work tapes for the computation of the machine, an output tape where we
output the proven formula, and an advice tape containing the advice. We start with
a quite general definition for functional proof systems with advice which subsumes
the definitions given by Cook and Kraj́ıček [2007].
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 13

Definition 5.1. Let k : N→ N be a function on natural numbers. A surjective
function f : Σ∗ → TAUT is a general functional propositional proof system with
k bits of advice, abbreviated general fpps/k, if there exists an advice function h :
N→ Σ∗ and an advice selector function ` : Σ∗ → 1∗ such that

(1) ` is computable in polynomial time,
(2) f(π) is computable in polynomial time with advice h(|`(π)|), i.e., for some fixed

polynomial-time Turing machine Pf , f(π) = Pf (π, h(|`(π)|)), and
(3) for all n ∈ N, the length of the advice h(n) is bounded by k(n).

We say that f uses k bits of input advice if ` has the special form `(π) = 1|π|. On
the other hand, in case `(π) = 1|f(π)|, then f is said to use k bits of output advice.
Note that the latter notion is only well-defined if we assume that the length of the
output f(π) does not depend on the advice. We remark that Cook and Kraj́ıček
[2007] defined a more restrictive concept of proof systems with output advice, which
they called length-determined functional proof systems.

The notions of (p-)simulations and (p-)optimality are easily generalized to proof
systems with advice. For p-simulations we will use polynomial-time computable
functions without advice (unless stated otherwise). We say that a proof system f
is (p-)optimal for some class F of proof systems if f (p-)simulates every system in
F and f ∈ F .

In the next proposition we observe that fpps/k with input advice are already as
strong as any general fpps/k (Definition 5.1).

Proposition 5.2. Let k : N → N be a monotone function and f be a general
fpps/k. Then there exists a functional proof system f ′ with k bits of input advice
such that f and f ′ are p-equivalent.

Proof. We choose a polynomial-time computable bijective pairing function 〈·, ·〉
on N such that 〈n1, n2〉 ≥ n1 + n2 for all numbers n1 and n2. Let f be an fpps/k
computed by Pf with advice function h and advice selector `. We define a proof
system f ′ with input advice as follows: on input π′ of length n the Turing machine
Pf ′ first computes the two unique numbers n1 and n2 such that n = 〈n1, n2〉. It
then interprets the first n1 bits π′1 . . . π

′
n1

of π′ as an f -proof π and checks whether
`(π) = 1n2 . If this is the case, Pf ′ outputs Pf (π), otherwise Pf ′(π′) = >. Obviously,
Pf ′(π′) uses advice h(|`(π)|) = h(n2) whose length is bounded by k(n1) ≤ k(n).
This shows that f ′ is an fpps/k with input advice.

The p-simulation of f by f ′ is computed by the function π 7→ π′ = π1m where
m = 〈|π|, |`(π)|〉 − |π|. The converse simulation f ′ ≤p f is given by

π′ 7→
{
π = π′1 . . . π

′
n1

if |π′| = 〈n1, n2〉 and `(π) = 1n2

π0 otherwise

where π0 is a fixed f -proof of >.

In the relational setting for propositional proof systems, advice can be easily
implemented as follows:

Definition 5.3 [Cook and Kraj́ıček 2007]. A propositional proof system
with k(n) bits of advice, abbreviated pps/k, is a relation P such that for all x ∈ Σ∗

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

14 · O. BEYERSDORFF and S. MÜLLER

we have x ∈ TAUT if and only if (∃y)P (y, x) and P can be decided by a polynomial-
time (in |x|+ |y|) algorithm which uses k(|x|) bits of advice.

As in the classical case without advice, functional proof systems with output
advice and relational proof systems with advice are two formulations of the same
concept:

Proposition 5.4. Let k : N → N be any function. Then every fpps/k with
output advice is p-equivalent to some pps/k. Conversely, every pps/k is p-equivalent
to an fpps/k with output advice.

Proof. For the left-to-right direction, let f be an fpps/k with output advice
and let Mf be a deterministic polynomial-time Turing machine that computes f
using the advice function h. Define a Turing machine M that computes a relational
proof system as follows. On input (π, ϕ) the machine M uses the advice h(|ϕ|) and
determines whether f(π) = ϕ. If true, then M accepts, otherwise M rejects.

For the converse direction, let P be a pps/k. We define an fpps/k with output
advice as follows. Let

f(π, ϕ) =

{
ϕ if P (π, ϕ) holds
>|ϕ| otherwise,

where>n denotes a fixed tautology of length n which can be computed in polynomial-
time from 1n. Such a sequence >n can be constructed by appropriately padding
an easy tautology (e.g. >).

As in the classical theorem of Cook and Reckhow [1979], Cook and Kraj́ıček
[2007] showed the following equivalence:

Theorem 5.5 [Cook and Kraj́ıček 2007]. Let k be any function. Then there
exists a polynomially bounded fpps/k with output advice if and only if TAUT ∈
NP/k.

In the case of polynomial, logarithmic, or constant advice we can formulate The-
orem 5.5 as follows.

Corollary 5.6. Let F be a class of functions on N such that for each f ∈ F
and each polynomial p, f ◦p ∈ F . Then there exists a polynomially bounded fpps/F
with output advice if and only if coNP ⊆ NP/F .

Proof. For the left-to-right direction, let f be an fpps/k with output advice
and polynomial bound p. Guessing at input ϕ an f -proof π of size ≤ p(|ϕ|) and
verifying f(π) = ϕ yields a nondeterministic polynomial-time algorithm for TAUT
which uses k(|ϕ|) bits of advice. As TAUT is coNP-complete, every language L in
coNP can be reduced to TAUT by a length-respecting polynomial-time reduction t
(i.e. if |x1| = |x2|, then also |t(x1)| = |t(x2)|). Therefore L has a nondeterministic
polynomial-time algorithm which uses k(q(n)) bits of advice, where q(n) = |t(1n)|
is the length increase of the reduction t. As k ∈ F there is another function k′ ∈ F
such that k(q(n)) = k′(n) for all n. Thus coNP ⊆ NP/F .

Conversely, an NP/k-procedure M for TAUT immediately gives a polynomially
bounded fpps/k with output advice, where proofs are accepting paths of the ma-
chine M .
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 15

6. OPTIMAL PROOF SYSTEMS WITH ADVICE

In this section we will investigate the question whether there exist optimal or p-
optimal propositional proof systems with advice. With respect to p-optimality,
there are two natural options how to define this concept in the presence of advice:
we may also allow the simulation functions to take advice or we can consider advice-
free simulations. With respect to the first option, a strong positive result was shown
by Cook and Kraj́ıček [2007].

Theorem 6.1 [Cook and Kraj́ıček 2007]. There exists a functional propo-
sitional proof system P with one bit of input advice which p-simulates all functional
propositional proof systems with k(n) bits of input advice for k(n) = O(log n). The
p-simulation is computed by a polynomial-time algorithm using k(n) bits of advice.

In terms of simulations rather than p-simulations this result yields:

Corollary 6.2. The class of all general fpps/O(log n) contains an optimal
functional proof system with one bit of input advice.

In the above theorem, in addition to the proof system also the simulation func-
tions are allowed to use advice. Our next result shows that for advice-free simulation
functions such a result does not hold.

Proposition 6.3. Let k : N→ N be an arbitrary function. Then there does not
exist a general fpps/k which p-simulates every fpps/1 with output advice.

Proof. Let f be a propositional proof system without advice. We will define
an uncountable family of proof systems with one bit of output advice. With each
infinite sequence a = (ai)i∈N with ai ∈ {0, 1}, we associate the following proof
system

fa(π) =





f(π′) if π = 0π′

f(π′) ∧ > if π = 1π′ and a|f(π′)∧>| = 1
f(π′) ∨ ⊥ if π = 1π′ and a|f(π′)∨⊥| = 0.

Because of the first line of its definition, fa is a complete proof system. Further, fa

uses one bit of output advice, as the length of fa(π) does not depend on the advice
bit (because f(π′) ∧ > and f(π′) ∨ ⊥ are of the same length). As all advice bits
from the sequence a are coded into the proof system fa according to lines 2 and 3 of
its definition, different sequences a and b also yield different proof systems fa and
fb. Therefore there exist uncountably many different fpps/1 with output advice.

On the other hand, there are only countably many Turing machines which can
compute potential p-simulations between proof systems. Simulating two different
proof systems fa and fb by one fixed proof system g requires two different simulation
functions. Hence the claim follows.

Proposition 6.3 immediately yields that none of the classes of proof systems with
advice can have a p-optimal proof system.

Corollary 6.4. Let k : N → N be a function such that k(n) > 0 for infinitely
many n ∈ N. Then the class of all general fpps/k does not contain a p-optimal
proof system. Similarly, the class of all fpps/k with output advice does not contain
a p-optimal proof system.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

16 · O. BEYERSDORFF and S. MÜLLER

The previous corollary contains strong negative information on the existence of
p-optimal proof systems with advice. In order to still obtain positive results in the
spirit of p-optimality, we make the following less restrictive definition.

Definition 6.5. Let k : N → N be any function. Then the class of all general
fpps/k has a p-optimal machine if there exists a deterministic polynomial-time
Turing machine M and a polynomial-time computable advice selector function ` :
Σ∗ → 1∗ such that for all general fpps/k f there exists an advice function h : N→
Σ∗ and a polynomial-time computable function t such that for all π ∈ Σ∗

(1) f(π) = M(t(π), h(|`(t(π))|)) (the p-simulation),
(2) for all n ∈ N, |h(n)| ≤ k(n) (the advice bound), and
(3) M(π, h(|`(π)|)) ∈ TAUT (the correctness).

Let us provide some motivation for this definition. Proof systems with advice
essentially consist of three components: the uniform polynomial-time Turing ma-
chine, the uniform advice selector function, and the nonuniform advice. As we
cannot control the nonuniform component (which causes the absence of p-optimal
proof systems by Proposition 6.3), it makes sense to ask for a p-optimal system
where only the uniform part is fixed, but the nonuniform advice remains variable.
This constellation is precisely described by the above notion of a p-optimal machine.
In the remaining part of this section we will investigate the question whether p-
optimal machines exist for several measures of advice.

In the next definition we single out a large class of natural functions which we
will use as advice bounds in Theorem 6.7 below.

Definition 6.6. A monotone function k : N → N is polynomially monotone
if there exists a polynomial p, such that for each m,n ∈ N, m ≥ p(n) implies
k(m) > k(n).

Monotone polylogarithmic functions and monotone polynomials (non-constant)
are examples for polynomially monotone functions. If we consider proof systems
with a polynomially monotone amount of advice, then we obtain p-optimal ma-
chines for each such class. This is the content of the next theorem which we prove
by the same technique as was used for Theorem 6.1.

Theorem 6.7. Let k(n) be a polynomially monotone function. Then the class
of all general fpps/k has a p-optimal machine.

Proof. Let k be a function as above. Since k is polynomially monotone we can
find a polynomial-time computable function ` : Σ∗ → 1∗ such that for each x ∈ Σ∗

we have k(|`(x)|) ≥ k(|x|) + 1. Moreover, we can choose the function ` such that
` is injective on lengths, i.e., for all x, y ∈ Σ∗, |`(x)| = |`(y)| implies |x| = |y|. Let
‖·‖ be an encoding of deterministic polynomial-time clocked Turing transducers by
natural numbers. Without loss of generality we may assume that every machine M
has running time |x|‖M‖. Further, we need a polynomial-time computable function
〈·, ·, ·〉 mapping triples of N bijectively to N.

We will construct a polynomial-time Turing machine P which together with the
above advice selector function ` serves as a p-optimal machine for the class of all
general fpps/k. Let Q be a system from the class of all general fpps/k with advice
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 17

function hQ. By Proposition 5.2 we may assume that Q has input advice. First
we will define a polynomial-time computable function tQ translating Q-proofs into
P -proofs and then we will describe how P works. We set tQ(π) = π1m where m is
determined from the equation m+ |π| = 〈|π| , 1‖Q‖, |π|‖Q‖〉.

Now we define the machine P : upon input x we first compute the unique numbers
m1, m2, m3 such that |x| = 〈m1,m2,m3〉. Let π = x1 . . . xm1 be the first m1 bits
of x. Then we determine the machine Q from the encoding |m2| = ‖Q‖. By the
construction of `, the machine P receives at least one more bit of advice than Q. For
the p-simulation of Q, the machine P uses the advice function hP,Q(|`(tQ(π))|) =
Correct_hQ(|π|), where Correct is a bit certifying that under the advice hQ(|π|),
the machine Q encoded by |m2| is indeed a correct propositional proof system on
proof length |π|. Because ` is injective on lengths, the bit Correct can indeed refer
to the correctness of Q on proof length |π|. Therefore, if the first advice bit of P
is 1, P simulates Q on input π for m3 steps, where it passes the last k(|π|) advice
bits of P to Q. Otherwise, if the first advice bit of P is 0, P outputs >. Except for
the first bit, P receives the same advice as Q. Further, the machine P p-simulates
every fpps/k Q with input advice via the polynomial-time computable function tQ.
By Proposition 5.2, P also p-simulates every general fpps/k. Thus, P and ` yield
a p-optimal machine.

In a similar way we get:

Proposition 6.8. For each constant k ≥ 0 there exists a machine P using k+1
bits of input advice that p-simulates every fpps with k bits of input advice.

Proof. The proof uses the same construction as in the proof of Theorem 6.7
where the last k advice bits of the new machine P are the advice bits for the
machine Q which we simulate if the first of the k + 1 advice bits certifies that Q is
correct, i.e., it only produces tautologies.

Regarding the two previous results there remains the question whether for con-
stant k the class of all general fpps/k also has a p-optimal machine with exactly k
bits. Going back to the proof of Proposition 6.8, we observe that the machine with
k+1 advice bits, which p-simulates each fpps/k, does not really need the full power
of these k+ 1 bits, but in fact only needs 2k + 1 different advice strings. Assuming
the existence of a p-optimal proof system without advice, we can manage to reduce
the amount of the necessary advice to exactly k bits, thus obtaining a p-optimal
machine for the class of all general fpps/k.

Theorem 6.9. Assume that there exists a p-optimal proof system. Then for
each constant k ≥ 1 the class of all general fpps/k has a p-optimal machine.

Proof. Sadowski [2002] proved that the existence of p-optimal propositional
proof systems can be characterized as follows:

There exists a p-optimal proof system if and only if there exists a recur-
sive enumeration Mi, i ∈ N, of deterministic polynomial-time clocked
Turing machines such that
(1) for every i ∈ N we have L(Mi) ⊆ TAUT and
(2) for every polynomial-time decidable subset L ⊆ TAUT there exists

an index i such that L ⊆ L(Mi).
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

18 · O. BEYERSDORFF and S. MÜLLER

Assume now that Mi is an enumeration of the easy subsets of TAUT as above.
For every proof system Q with k bits of input advice we construct a sequence of
propositional formulas

Prf Q
m,n,k(π, ϕ, a) ,

asserting that the computation of Q at input π of length m leads to the output ϕ
of length n under the k advice bits of a. We also choose a propositional formula
Tautn(ϕ) stating that the formula encoded by ϕ is a propositional tautology. As
Q is an fpps/k, the formulas

CorrectQ
m,n,k = (∃a)(∀π, ϕ)

(
Prf Q

m,n,k(π, ϕ, a) → Tautn(ϕ)
)

are true quantified Boolean formulas for every n,m ≥ 0. Since the advice length
k is a constant, the quantifier (∃a) can be replaced by a constant-size disjunction,
making it Πq

1; by prenexing and stripping the universal quantifiers, we obtain a
usual Boolean formula. Because the resulting formulas can be constructed in poly-
nomial time from Q, there exists an index i ∈ N such that Mi accepts the set of
propositional translations of {CorrectQ

m,n,k | m,n ≥ 0}.
Now we construct a p-optimal machine P with k advice bits as follows: at input

x we compute the unique numbers m1, . . . ,m5 such that |x| = 〈m1, . . . ,m5〉. As
in the proof of Theorem 6.7, we set π = x1 . . . xm1 and ‖Q‖ = m2. The machine
P then simulates Q(π) with its own k advice bits for m3 steps. If the simulation
does not terminate, then P outputs >. Otherwise, let ϕ be the output of this
simulation. But before also P can output ϕ, we have to check the correctness of Q
for the respective input and output length. To do this, P simulates the machine
Mm4 on input CorrectQ

m1,|ϕ|,k for at most m5 steps. If Mm4 accepts, then we output
ϕ, and > otherwise.

The advice which P receives is the correct advice for Q, in case that Mm4 certifies
that such advice indeed exists. To show the p-optimality of P , let Q be an fpps/k
with input advice and let Mi be the machine accepting {CorrectQ

m,n,k | m,n ≥ 0}.
Then the system Q is p-simulated by the machine P via the mapping π 7→ π1m

where m = 〈|π|, ‖Q‖, p(|π|), i, p(`)〉 − |π|, where p is a polynomial bounding the
running time of both Mi and Q, and ` = maxi≤p(|π|)(|CorrectQ

|π|,i,k|).
All the optimal proof systems and p-optimal machines that we have so far con-

structed were using input advice. It is a natural question whether we can improve
these constructions to obtain proof systems with output advice that still have the
same optimality conditions. While we must leave this question open, our next re-
sult shows that it seems unlikely to give an affirmative answer with currently avail-
able techniques, as otherwise collapse assumptions of presumably different strength
would be equivalent. This result indicates that, by current knowledge, input ad-
vice for propositional proof systems is indeed a more powerful concept than output
advice.

Theorem 6.10. Let k ≥ 1 be a constant and assume that there exists an fpps/k
with output advice that simulates every fpps/1. Then the following conditions are
equivalent:

(1) The polynomial hierarchy collapses to BH2k .
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 19

(2) The polynomial hierarchy collapses to BH.
(3) coNP ⊆ NP/O(log n).
(4) coNP ⊆ NP/k.

Proof. The equivalence of 1 and 4 was shown by Buhrman, Chang, and Fortnow
(Theorem 4.1), and clearly, item 1 implies item 2. It therefore remains to prove the
implications 2 ⇒ 3 and 3 ⇒ 4.

For the implication 2 ⇒ 3, let us assume PH ⊆ BH. We choose a Σp
2-complete

problem L, which by assumption is contained in BHk′ for some number k′. By
Theorem 4.1 this implies coNP ⊆ NP/k′ and hence coNP ⊆ NP/O(log n).

For the final implication 3⇒ 4, we assume coNP ⊆ NP/O(log n). By Theorem 5.5
this guarantees the existence of a polynomially bounded system P with O(log n)
bits of output advice. By Theorem 6.1, P is simulated by a proof system P ′ with
only one bit of input advice. Hence also P ′ is polynomially bounded. Now we
use the hypothesis of the existence of a functional proof system Q with k bits of
output advice which simulates all fpps/1. In particular, P ′ ≤ Q and therefore Q is
a polynomially bounded fpps/k with output advice. Using again Theorem 5.5 we
obtain coNP ⊆ NP/k.

With respect to the optimal proof system from Corollary 6.2 we obtain:

Corollary 6.11. The optimal fpps/1 from Corollary 6.2 is not equivalent to
an fpps/1 with output advice, unless PH ⊆ BH implies PH ⊆ Dp.

Of course, rather than indicating that proof systems with constant output advice
cannot be optimal for the class of all general fpps/O(log n), this corollary points
towards our current limitations to disprove such a result.

7. CLASSICAL PROOF SYSTEMS WITH ADVICE

Let us now outline how one can define classical proof systems that use advice.
A priori it is not clear how systems like resolution or Frege can sensibly use advice,
but a canonical way to implement advice into them is to enhance these systems
by further axioms which can be decided in polynomial time with advice. Cook
and Kraj́ıček [Cook and Kraj́ıček 2007] have defined the notion of extended Frege
systems using advice. We give a more general definition.

Definition 7.1. Let Φ be a set of tautologies that can be decided in polynomial
time with k(n) bits of advice. We define the system EF + Φ/k as follows. An
EF + Φ/k-proof of a formula ϕ is a pair 〈π, ψ0〉, where π is an EF-proof of an
implication ψ → ϕ and ψ is a simple substitution instance of ψ0 ∈ Φ (simple
substitutions only replace some of the variables by constants).

If π is an EF +Φ/k-proof of a formula ϕ, then the advice used for the verification
of π neither depends on |π| nor on |ϕ|, but on the length of the substitution instance
ψ from Φ, which is used in π. As |ψ| can be easily determined from π, EF + Φ/k
are systems of the type fpps/k (in fact, this was the motivation for our general
Definition 5.1).

If we require that the length of ψ in the implication ψ → ϕ is determined by
the length of the proven formula ϕ, then the advice only depends on the output

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

20 · O. BEYERSDORFF and S. MÜLLER

and hence we get an fpps/k with output advice. This is the case for a collection of
extensions of EF defined by Cook and Kraj́ıček [2007], which are motivated by the
proof of Theorem 4.10. Cook and Kraj́ıček proved that these systems, which use
constant advice, are polynomially bounded if VPV proves coNP ⊆ NP/O(1).

Our next result shows that the optimal proof system from Corollary 6.2 is equiv-
alent to an extended Frege system with advice as in Definition 7.1.

Theorem 7.2. (1) There exists a set Ψ ∈ P/1 such that EF + Ψ/1 is optimal
for the class of all general fpps/O(log n).

(2) In contrast, none of the constant advice extensions of EF as defined in [Cook
and Kraj́ıček 2007] simulates every general fpps/1, unless items 1 to 4 from
Theorem 6.10 are equivalent.

Proof. For item 1 we choose the system P using 1 bit of input advice which is
optimal for the class of all fpps/O(log n) according to Corollary 6.2. We define the
set Ψ ∈ P/1 as the collection of all formulas

RFN P
m,n,1 = Prf P

m,n,1(π, ϕ, a) → Tautn(ϕ)

which describe the correctness of P , similarly as in the proof of Theorem 6.9. In
contrast to the formulas CorrectP

m,n,k from the proof of Theorem 6.9, the correct
advice bit a is already substituted into the formula Prf P

m,n,1(π, ϕ, a). Therefore,
the set

Ψ = {RFN P
m,n,1(π, ϕ, a) | m,n ≥ 0}

is not necessarily in P, but only in P/1.
To show the optimality of EF + Ψ/1 it suffices to prove P ≤ EF + Ψ/1. For this

let π be a P -proof of ϕ. Substituting the propositional encodings of π and ϕ into
RFN P

|π|,|ϕ|,1, we obtain the formula

Prf P
m,n,1(π, ϕ, a) → Tautn(ϕ) .

Now Prf P
m,n,1(π, ϕ, a) is a tautological formula, where all relevant variables have

been substituted by constants (only auxiliary variables describing the computation
of P remain free, but these variables are determined by π). Therefore, we can
derive Prf P

m,n,1(π, ϕ, a) in a polynomial-size EF -proof, and modus ponens yields
Tautn(ϕ). By induction on the formula ϕ, we can devise polynomial-size EF -proofs
of

Tautn(ϕ) → ϕ .

Hence one further application of modus ponens gives the formula ϕ, and thus we
have constructed a polynomial-size EF + Ψ/1-proof of ϕ.

As the extensions of EF defined by Cook and Kraj́ıček [2007] use a constant
amount of output advice, the second item follows by Theorem 6.10.

Comparing the definition of EF with advice from [Cook and Kraj́ıček 2007] with
our Definition 7.1, we remark that both definitions are parametrized by a set of
tautologies Φ, and hence they both lead to a whole class of proof systems rather
than the extended Frege system with advice. The drawback of our Definition 7.1
is, that even in the base case, where no advice is used, we do not get EF , but
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic · 21

again all extensions EF + Φ with polynomial-time computable Φ ⊆ TAUT. It is
known that each advice-free propositional proof system is p-simulated by such an
extension of EF [Kraj́ıček 1995]. In contrast, Cook and Kraj́ıček’s extended Frege
systems with advice lead exactly to EF , if no advice is used. On the other hand,
even with advice these systems appear to be strictly weaker than the systems from
Definition 7.1, as indicated by item 2 of Theorem 7.2.

Finally, we will outline how other classical proof systems like resolution can be
equipped with advice. Let Φ = {ϕn | n ≥ 0} be a sequence of tautologies in
conjunctive normal form. Then ϕn can be written as a set of clauses ∆n. Assume
further that Φ can be decided in polynomial time with k(n) bits of advice. A
resolution system with advice Res +Φ is then defined as follows: Let ψ be a formula
in disjunctive normal form and let Γ be the set of clauses for ¬ψ. A Res + Φ-proof
of ψ is a resolution refutation of the set ∆∪Γ where ∆ is some simple substitution
instance of ∆n for some n.

8. DISCUSSION AND OPEN PROBLEMS

In this paper we have shown that PH ⊆ BH is the optimal Karp-Lipton col-
lapse within the theory PV . It remains as an open problem whether also PH ⊆
PNP[O(log n)] and PH ⊆ PNP are optimal within S1

2 and S2
2 , respectively (cf. [Cook

and Kraj́ıček 2007]). For S1
2 this corresponds to the problem whether coNP ⊆

NP/O(log n) is equivalent to PH ⊆ PNP[O(log n)]. Buhrman, Chang, and Fort-
now [2003] conjecture coNP ⊆ NP/O(log n) ⇐⇒ PH ⊆ PNP (cf. also [Fortnow
and Klivans 2005]). This seems unlikely, as Cook and Kraj́ıček [2007] noted that
coNP ⊆ NP/O(log n) implies PH ⊆ PNP[O(log n)]. However, it does not seem possible
to extend the technique from [Buhrman et al. 2003] to prove the converse impli-
cation. Is even coNP ⊆ NP/poly ⇐⇒ PH ⊆ PNP true, possibly with the stronger
hypothesis that both inclusions are provable in S2

2? Currently, coNP ⊆ NP/poly is
only known to imply PH ⊆ SNP

2 [Cai et al. 2005].
With respect to the proof systems with advice we remark that all advice informa-

tion we have used for our optimal systems in Sects. 6 and 7 can be decided in coNP.
It would be interesting to know whether we can obtain stronger proof systems by
using more complicated advice.

ACKNOWLEDGMENTS

We are grateful to Emil Jeřábek, Johannes Köbler, Jan Kraj́ıček, and the anony-
mous referees of both the conference and the journal version for very helpful com-
ments and detailed suggestions on how to improve this paper.

REFERENCES

Balcázar, J. L., D́ıaz, J., and Gabarró, J. 1988. Structural Complexity I. Springer-Verlag,
Berlin Heidelberg.

Beigel, R. 1991. Bounded queries to SAT and the Boolean hierarchy. Theoretical Computer
Science 84, 199–223.

Beyersdorff, O., Köbler, J., and Müller, S. 2009. Nondeterministic instance complexity and
proof systems with advice. In Proc. 3rd International Conference on Language and Automata
Theory and Applications. Lecture Notes in Computer Science, vol. 5457. Springer-Verlag, Berlin
Heidelberg, 164 – 175.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

22 · O. BEYERSDORFF and S. MÜLLER

Buhrman, H., Chang, R., and Fortnow, L. 2003. One bit of advice. In Proc. 20th Symposium
on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 2607.
Springer-Verlag, Berlin Heidelberg, 547–558.

Cai, J.-Y. 2007. Sp
2 ⊆ ZPPNP . Journal of Computer and System Sciences 73, 1, 25–35.

Cai, J.-Y., Chakaravarthy, V. T., Hemaspaandra, L. A., and Ogihara, M. 2005. Competing
provers yield improved Karp-Lipton collapse results. Information and Computation 198, 1,
1–23.

Chang, R. and Kadin, J. 1996. The Boolean hierarchy and the polynomial hierarchy: A closer
connection. SIAM Journal on Computing 25, 2, 340–354.

Cook, S. A. 1975. Feasibly constructive proofs and the propositional calculus. In Proc. 7th
Annual ACM Symposium on Theory of Computing. 83–97.

Cook, S. A. 2005. Theories for complexity classes and their propositional translations. In
Complexity of Computations and Proofs, J. Kraj́ıček, Ed. Quaderni di Matematica, 175–227.

Cook, S. A. and Kraj́ıček, J. 2007. Consequences of the provability of NP ⊆ P/poly. The
Journal of Symbolic Logic 72, 4, 1353–1371.

Cook, S. A. and Nguyen, P. 2009. Logical Foundations of Proof Complexity. Cambridge
University Press. To appear.

Cook, S. A. and Reckhow, R. A. 1979. The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44, 1, 36–50.

Fortnow, L. and Klivans, A. R. 2005. NP with small advice. In Proc. 20th Annual IEEE
Conference on Computational Complexity. 228–234.

Jeřábek, E. 2008. Approximate counting by hashing in bounded arithmetic. Journal of Symbolic
Logic. To appear.

Kadin, J. 1988. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. SIAM
Journal on Computing 17, 6, 1263–1282.

Karp, R. M. and Lipton, R. J. 1980. Some connections between nonuniform and uniform
complexity classes. In Proc. 12th ACM Symposium on Theory of Computing. ACM Press,
302–309.

Köbler, J. and Watanabe, O. 1998. New collapse consequences of NP having small circuits.
SIAM Journal on Computing 28, 1, 311–324.

Kraj́ıček, J. 1995. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclo-
pedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge.

Kraj́ıček, J. and Pudlák, P. 1989. Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic 54, 3, 1063–1079.

Kraj́ıček, J., Pudlák, P., and Takeuti, G. 1991. Bounded arithmetic and the polynomial
hierarchy. Annals of Pure and Applied Logic 52, 143–153.

Sadowski, Z. 2002. On an optimal propositional proof system and the structure of easy subsets
of TAUT. Theoretical Computer Science 288, 1, 181–193.

Zambella, D. 1996. Notes on polynomially bounded arithmetic. The Journal of Symbolic
Logic 61, 3, 942–966.

Received September 2008; revised April 2009; accepted April 2009

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

