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Abstract

We examine the tree-like versions of QBF Frege and extended Frege systems.
While in the propositional setting, tree-like and dag-like Frege systems are
equivalent, we show that this is not the case for QBF Frege, where tree-
like systems are exponentially weaker. This applies to the version of QBF
Frege where the universal reduction rule substitutes universal variables by
0/1 constants.

To show lower bounds for tree-like QBF Frege we devise a general tech-
nique that provides lower bounds for all tree-like QBF systems of the form
P+∀red, where P is a propositional system. The lower bound is based on the
semantic measure of strategy size corresponding to the size of countermodels
for false QBFs.

We also obtain a full characterisation of hardness for tree-like QBF Frege.
Lower bounds for this system either arise from a lower bound to propositional
Frege, from a circuit lower bound, or from a lower bound to strategy size.

Keywords: proof complexity, QBF, Frege systems, lower bounds

1. Introduction

The primary goal of proof complexity is to show upper and lower bounds
on the sizes of proofs of tautologies in different proof systems, and thus to be
able to compare the relative strengths of these proof systems. The close ties
between several of these proof systems and modern SAT and QBF solvers
[1], such as the connection between Resolution and CDCL-based solvers,
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ensure that such results can be leveraged to provide a better understanding
of solving techniques.

Of particular interest to proof complexity are new techniques for showing
lower bounds on the proofs of formulas, such as the relations between size and
width for propositional resolution [2], and in the case of quantified Boolean
formulas (QBFs), lifting circuit lower bounds via strategy extraction [3, 4],
and the Size-Cost-Capacity theorem [5]. Such techniques not only provide
the clear benefit of proving several lower bounds on proof systems, but also
suggest families of formulas which ought to be hard instances for solvers,
and therefore provide suitable benchmarks for the testing and improvement
of such solvers.

The focal point of this paper are Frege systems. In the propositional
setting these are very strong proof systems [6], based on axiom schemes and
rules such as modus ponens. While Frege systems operate with Boolean for-
mulas as lines, the extended Frege system EF works with Boolean circuits [7].
Showing lower bounds on Frege or even extended Frege systems constitutes
a major open problem in proof complexity [8].

A common method for extending a propositional proof system P, for the
SAT problem, to a QBF proof system is the addition of the universal re-
duction rule ∀red, resulting in the QBF system P+∀red [9, 10, 4]. This con-
struction also gives rise to QBF Frege and extended Frege systems [4, 11].
The ∀red rule allows the substitution of universal variables under certain re-
strictions, either by constants 0/1, or by some suitably expressed Boolean
function. The ∀red rule is generally used in the form allowing only sub-
stitution by constants, since in many of the most commonly studied proof
systems, such as QU-Res or dag-like Frege+∀red, the two versions are equiva-
lent [10, 11], and 0/1 substitution models solving techniques such as QDPLL
and QCDCL [12].

The round-based strategy extraction algorithm defined in [13] has been
used to construct lower bounds for P+∀red proof systems based on the cost
of a formula [5], a semantic measure which counts how many responses are
needed in one block of universal quantifiers. Here we consider strategy size, a
more general notion than cost which looks at the responses across all universal
blocks. Strategy size was first introduced in [14] where it was shown to
provide lower bounds to the expansion QBF system ∀Exp+Res [15]. However,
strategy size is not sufficient to obtain lower bounds in QBF systems of the
form P+∀red.

In this paper we combine strategy size with a careful analysis of the
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round-based strategy extraction algorithm of [13] in order to lower bound
the number of paths in a proof from the root to an axiom. In particular, this
gives an immediate lower bound on any tree-like P+∀red proof system.

Having proved this lower bound technique, we obtain a characterisation
of tree-like Frege+∀red and EF+∀red lower bounds. In [11] a dichotomy is
shown for Frege+∀red (and respectively EF+∀red): hardness either arises
from a circuit lower bound for NC1 (resp. P/poly) or a propositional lower
bound for Frege (resp. EF). Hence EF+∀red combines the hardest problems
for circuit and proof complexity.

Here we extend this dichotomy to a characterisation of tree-like Frege+∀red
and EF+∀red lower bounds. This characterisation demonstrates that all lower
bounds on tree-like Frege+∀red and tree-like EF+∀red which do not arise from
a lower bound on the corresponding dag-like system are a result of a lower
bound on strategy size.

This result provides a trichotomy for hardness in tree-like Frege+∀red
and EF+∀red and also exactly identifies those formulas which provide sepa-
rations between the tree-like and dag-like versions. This is quite in contrast
to the propositional scenario, where it is known that tree-like and dag-like
Frege are equivalent (and similarly for EF) [16]. The separations between
tree-like Frege+∀red and dag-like Frege+∀red crucially rely on the fact that
the universal reduction rule only allows to substitute constants 0/1 for uni-
versal variables. If substitution by arbitrary formulas (or circuits in case of
EF+∀red) is allowed, then again the equivalence of the tree-like and dag-like
systems hold [11]. Furthermore, these versions are equivalent to the dag-like
Frege+∀red systems with 0/1 reduction considered here [11]. Hence there are
essentially two different versions of Frege+∀red: the tree-like 0/1-reduction
version and the dag-like version (with either 0/1 or formula reduction).

2. Preliminaries

For a set of variables X, we use the notation 〈X〉 to refer to the set of
Boolean assignments from X to {0, 1}. For clarity, for an assignment α on
variables x1, . . . , xn, we denote by αi the restriction of α to the variables
x1, . . . , xi.

In the context of proof systems considered here, a line with variables in
X is associated with a function 〈X〉 → {0, 1}. The set of variables which
appear in a line L is denoted by vars(L) ⊆ X. Lines are often expressed as a
Boolean circuit from a specified circuit class, but can also be in other forms
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such as a linear inequality or a polynomial equality. The restriction of a line
L by a partial assignment α to a subset of the variables of L is denoted by
L[α].

2.1. Quantified Boolean Formulas

A quantified Boolean formula (QBF), often denoted Φ = Π ·φ, consists of
a quantifier prefix Π = ∃x1∀u1∃x2∀u2 . . . ∀un∃xn+1, with quantifiers ranging
over {0, 1}, and a propositional matrix φ = φ(x1, u1, . . . , xn, un, xn+1) con-
taining only variables quantified in Π. The matrix φ is often expressed in
conjunctive normal form (CNF); in the present work we assume all QBFs
to be such QCNFs. It will be convenient to refer to the sets of existential
variables X = {x1, . . . , xn+1} and universal variables U = {u1, . . . , un}, and
their subsets Xi (resp. Ui) restricted to {x1, . . . , xi} (resp. {u1, . . . , ui}). For
any line L, we define the level lev(L) of the line to be the least i such that
vars(L) ⊆ Xi ∪ Ui−1.

The semantics of a QBF Φ can be understood by expanding the quantifiers
in the prefix, i.e. by repeatedly applying the equivalences ∃x Φ ≡ Φ[x/0] ∨
Φ[x/1] and ∀x Φ ≡ Φ[x/0] ∧ Φ[x/1].

Alternatively, the semantics of QBFs can be conveniently described as a
two player game between an existential player and a universal player. At
the ith round of the game, the existential player assigns a value to xi, and
then the universal player assigns a value to ui. The game concludes after the
existential player has assigned a value to xn+1. The existential player wins
the game if the matrix φ evaluates to true under the assignment constructed,
whereas the universal player wins the game if φ evaluates to false. A QBF Φ
is false (true) if and only if the universal (existential) player has a winning
strategy for the game played on Φ.

We can describe a strategy for the universal player for Φ formally as a
function S : 〈X〉 → 〈U〉 such that for any α, γ ∈ 〈X〉, and 1 ≤ i ≤ n, if
αi = γi, then S(α)i = S(γ)i, i.e. a strategy’s response on ui depends only
on the existential variables to the left of ui. A strategy S for the universal
player for Φ is winning if φ[α ∪ S(α)] = ⊥ for any α ∈ 〈X〉.

2.2. QBF proof systems

Informally, a proof system for a language L is a definition of what is
considered to be a proof that Φ ∈ L [6]. The key features of a proof system are
that it is sound – only formulas in L have proofs, complete – all formulas in
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L have proofs, and that there is an algorithm, with running time polynomial
in |π|, to check whether π is a proof that Φ ∈ L.

In the present work, we consider refutational proof systems for the lan-
guages SAT and TQBF, of satisfiable CNFs and true QBFs respectively. As
such, we use the terms proof and refutation interchangeably. A line-based
proof system P defines what axioms may be introduced given a formula Φ,
and a sound set of rules for deducing new lines from preceding ones.

A proof of Φ in P consists of a sequence of lines L1, . . . , Lm, with Lm = ⊥,
concluding that Φ is unsatisfiable (SAT) or false (TQBF). Each line Li is
either an axiom introducible from Φ, or is derived using an inference rule of
P with antecedents Li1 , . . . , Lik , for some i1, . . . , ik < i. Since π is an ordered
sequence of lines, we write L1 <π L2 if L1 appears before L2 in the sequence.

We can also consider such a proof π as a directed acyclic graph (dag)
with edges from each Lij to Li for each Li derived using an inference rule as
above. We say that Li precedes Lj in π, and write Li ≺π Lj if there is a path
from Li to Lj in this dag. It is clear that ≺π is a restriction of the order <π

induced by the order in which the lines appear in π.
In a tree-like proof system, each line can be used as an antecedent at most

once; the line must be rederived each time it is used as the antecedent in a
deduction. As a result, the corresponding dag must be a tree. We refer to
proof systems without this restriction as dag-like.

The most widely-studied line-based proof system for the SAT problem is
Resolution, the tree-like version of which corresponds to the DPLL algorithm
for SAT solving [17, 18]. A Resolution refutation of φ is a deduction of the
empty clause, representing ⊥, from the clauses of φ using only the resolution

rule: C ∨ x D ∨ ¬x
C ∨D .

Many variants of Resolution and other line-based propositional proof sys-
tems have been studied. In particular, rather than using clauses, the Frege
and Extended Frege proof systems operate using any Boolean formula (re-
spectively circuit) and any sound and complete set of deduction rules [6, 7].
More generally, C-Frege systems use lines which are circuits from the circuit
class C with a suitable sound and complete set of deduction rules for circuits
in C. The strength of these systems is such that the tree-like versions of
Frege and Extended Frege are equivalent to the dag-like versions [16]; this
also holds for some weaker circuits classes such as AC0 and TC0.

There have been several paradigms proposed to extend propositional cal-
culi to proof systems for QBFs. Perhaps the most prominent of these is the
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introduction of the ∀-reduction rule to the set of deduction rules [9, 4]. Given
a line-based propositional proof system P and a QCNF Φ = Π · φ, P+∀red
allows the same axioms (from φ) and deduction rules as P, but also allows the
deduction of C[u/b] from C for some b ∈ {0, 1} whenever a universal variable
u is right of all other variables in C with respect to the quantifier prefix Π.
Given a few very natural restrictions on the proof system P, which all proof
systems above satisfy, the proof system P+∀red is sound and complete [4, 5].

Any lower bound for a propositional proof system P immediately extends
to a lower bound for P+∀red by quantifying all variables existentially. As
observed in [19, 20], these bounds do not provide any information about the
interaction of the proof system with the quantification of the variables. In the
case of P+∀red, genuine QBF lower bounds can be identified by providing a
lower bound on the total size of the ∀-reduction steps. A formal model for
‘genuine’ QBF lower bounds is developed in [20].

2.3. Restricting proofs

Finally, we provide a precise definition of restricting a proof by an assign-
ment. A proof π of a QBF Φ in a proof system P+∀red can be restricted by
any assignment to a subset of the existential variables. If the leftmost vari-
able in Φ is universal, π can be restricted by an assignment to this variable
which witnesses that Φ is false. In both cases, the restricted proof π[α] will
then be a proof of Φ[α].

To construct π[α], let Lα be the first line in π which restricts to ⊥ under
this assignment. We remove from π any lines after Lα, and restrict every line
by α. Finally, we remove any lines which now evaluate to >, and iteratively
remove any sinks which are not Lα[α] = ⊥, so that no lines which are not
directly used to derive ⊥ are contained in π[α]. This step of removing su-
perfluous lines need not be included in the definition of a restriction, as such
lines are permitted in a proof. We include it here as it greatly simplifies the
structure of the restricted proofs.

3. Lower bounds on paths in P+∀red proofs

Suppose π is a P+∀red refutation of a QBF Φ. Since P+∀red is sound,
Φ is false, and so there is a winning strategy for the universal player in the
two-player game on Φ. In [13], a strategy extraction algorithm based on the
restriction of refutations was developed, which we now describe.
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Definition 1 (Strategy extraction algorithm [13]). Let π be a P+∀red
refutation of a false QBF Φ, and let α ∈ 〈X〉 be an assignment to the
existential variables of Φ. The universal player’s response β is constructed
round by round. Let πα1 = π[α1], and construct the response at round i as
follows:

• Define Lαi to be the final line in παi . If Lαi is derived by a ∀-reduction
substituting ui/b, define β(ui) = b, else define β(ui) = 0 when Lαi is
derived by a propositonal rule or by a ∀ reduction on ui′ for i′ > i.

• Restrict παi by βi ∪ αi+1 to give παi+1 = παi [αi+1 ∪ βi].

After n rounds, this constructs a complete universal response β ∈ 〈U〉,
and the response at round i was computed using only the assignment αi.

Observe that this strategy extraction algorithm not only defines a re-
sponse for each existential assignment α, but also constructs a sequence of
lines Lαi from which the universal response on ui is extracted. We use the
notation Lαi to refer to the line in π which becomes the final line in παi under
restriction by α ∪ Sπ(α). We primarily concern ourselves with which lines
are present in the restricted proofs παi , so for a line L ∈ π, we write L ∈ παi
whenever L[αi ∪ Sπ(α)i−1] ∈ παi .

Since the response for ui is determined by the deduction rule used to
derive Lαi , assignments with different responses must result in different se-
quences of lines of π.

Lemma 2. Let π be a P+∀red refutation of Φ. If the assignments α, γ ∈ 〈X〉
result in different responses under the strategy extraction algorithm, then
there is some k such that Lαk 6= Lγk.

Proof. Let βα, βγ ∈ 〈U〉 be the responses to α and γ respectively. Without
loss of generality, since βα 6= βγ, let k be such that βα(uk) = 1 and βγ(uk) =
0. Therefore, Lαk is derived in π by a ∀-reduction step substituting uk/1,
whereas Lγk is derived by a ∀-reduction step using uk/0, or by a propositional
deduction rule. In either case, it is clear that Lαk 6= Lγk.

We emphasise that the lines Lαk and Lγk in Lemma 2 are distinct as lines
of π. For example, a Frege+∀red refutation, particularly a tree-like refuta-
tion, may derive multiple copies of the same formula. Since these copies are
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considered distinct lines of π, Lαk and Lγk may therefore still be identical as
formulas, despite being distinct as lines of π.

Some definitions of the round-based strategy extraction algorithm use the
restricted proof π[αi+1∪βi] at the ith round, rather than using παi [αi+1∪βi].
Both result in a winning universal strategy, however since π[αi+1 ∪ βi] and
παi [αi+1∪βi] are not necessarily identical, they may result in different winning
strategies.

Using restrictions of παi rather than π ensures the following useful prop-
erty of the lines Lαi : for any assignment α ∈ 〈X〉, and any i < j, either
Lαi = Lαj , or Lαi �π Lαj . We can use the strategy extraction algorithm to
extend this sequence to a path through π corresponding to the run of the
strategy extraction algorithm on π and α.

Definition 3. Define pα ⊆ π to be a path through π, i.e. a maximal totally
ordered subset of π under ≺π, such that Lαi ∈ pα for each 1 ≤ i ≤ n, and for
any L ∈ pα, if L ≺π Lαi , then L ∈ παi .

Several such paths may exist; to ensure the uniqueness of pα, define pα to
be the first such path in the lexicographic ordering induced by <π. However
the properties above are the only ones we shall use in this work, so any
suitable path could be chosen.

Proposition 4. Let π be a P+∀red refutation of a false QBF Φ. For any
assignments α, γ ∈ 〈X〉 which produce distinct responses using the strategy
extraction algorithm on π, pα 6= pγ.

Proof. Define Lα0 = Lγ0 = ⊥ to be the final line of π. By Lemma 2, there
is some 1 ≤ k ≤ n such that Lαk 6= Lγk; pick the least such k, so that
Lαk−1 = Lγk−1 = Lk−1.

If Lαk and Lγk are incomparable in the partial order ≺π, then no path can
contain both Lαk and Lγk and the paths pα and pγ are distinct. Therefore
assume without loss of generality that Lαk ≺π L

γ
k. Recall that for any line

L ∈ pγ such that L ≺π Lγk, we have L ∈ πγk . To show pα 6= pγ, it therefore
suffices to show that Lαk 6∈ π

γ
k and hence Lαk 6∈ pγ, since Lαk ∈ pα.

It is clear that if Lαk 6∈ π
γ
k−1, then Lαk 6∈ π

γ
k and we are done, so assume

Lαk ∈ π
γ
k−1. By the definition of Lαk , lev(Lαk ) ≤ k, so the assignment γk∪βk−1

is a total assignment to the variables of Lαk . It cannot be the case that
Lαk [γk ∪ βk−1] = ⊥, as this contradicts the choice of Lγk as the first line in
πγk−1 which restricts to ⊥ under this assignment, hence Lαk [γk ∪ βk−1] = >.
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As tautologies are removed from the restricted proof πγk−1[γ
k ∪ βk−1] = πγk ,

Lαk 6∈ π
γ
k and pα 6= pγ.

Given that assignments resulting in different responses from the strategy
extraction algorithm give rise to distinct paths in the proof, it is natural
to define a measure counting the number of distinct responses required in a
strategy. We can then use Proposition 4 to gain some understanding of the
structure of P+∀red proofs of QBFs requiring a large number of responses.

Definition 5 ([14]). For any QBF Φ, the strategy size ρ(Φ) is the minimal
size of the range of a winning strategy for Φ:

ρ(Φ) := min{|rng(S)| : S is a winning strategy for Φ}.

Corollary 6. For any QBF Φ and P+∀red proof π of Φ, the strategy extrac-
tion algorithm constructs at least ρ(Φ) distinct paths through π.

This lower bound on the number of paths demonstrates the importance of
reusing lines in the derivation, as this allows multiple distinct paths through
the same line. In the case of tree-like P+∀red proofs, where lines cannot
be reused, the lower bound on paths immediately gives a lower bound for
proof size based only on the relatively simple measure of strategy size, and
independent of the base propositional proof system.

Theorem 7. For any QBF Φ, if π is a tree-like P+∀red proof of Φ, then
|π| ≥ ρ(Φ).

Proof. Since π is a tree-like proof, there is a unique path from each axiom
to the final line of the proof. By Corollary 6, there are at least ρ(Φ) paths
through π, so π contains at least ρ(Φ) axioms.

To show a lower bound on tree-like P+∀red proofs, it therefore suffices to
show a lower bound on ρ(Φn) for some family of QBFs Φn. There are already
several examples of such QBF families in the literature, such as the formulas
defined by Kleine Büning et al. [9] or the equality formulas defined in [5].
The formulas we choose to exemplify such a lower bound were defined in [21],
where it was noted that these formulas have short QU-Res proofs (QU-Res
coincides with Res +∀red). These formulas therefore not only provide a lower
bound for tree-like Frege+∀red and EF+∀red, but also a separation between
tree-like EF+∀red and dag-like QU-Res.
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Corollary 8. If π is a tree-like Frege+∀red or EF+∀red proof of

Φn := ∃x1∀u1∃t1t2 . . . ∃xn∀un∃t2n−1t2n·
n∧
i=1

[(¬xi ∨ t2i−1) ∧ (¬ui ∨ t2i−1) ∧ (xi ∨ t2i) ∧ (ui ∨ t2i)] ∧
2n∨
j=1

¬tj

then |π| ≥ 2n.

Proof. The only winning universal strategy is to play ui = ¬xi. This forces
the existential player to set both t2i−1 and t2i positively, ultimately falsifying
the large clause at the final round. Given this unique winning strategy,
ρ(Φn) = 2n, and the lower bound follows by Theorem 7.

Given the equivalences previously shown between various tree-like and
dag-like versions of Frege+∀red and EF+∀red, this lower bound may at first
seem surprising. In [11], it was shown that tree-like and dag-like Frege+∀red
are equivalent when the ∀-reduction rule can substitute in any suitable Boolean
formula (instead of just constants 0/1 as defined here). Additionally, [11]
shows that the dag-like Frege+∀red systems allowing reduction by {0, 1} and
allowing reduction by any Boolean formula are equivalent. The same two
equivalences hold for EF+∀red in place of Frege+∀red, where for EF+∀red we
allow substitutions by Boolean circuits.

However, both of these equivalences rely on the fact that the other re-
striction is not present. Restricting proofs to be tree-like and only allowing
∀-reduction on {0, 1} results in a substantially weaker system, as shown by
the lower bound in Corollary 8. As Frege+∀red p-simulates QU-Res, we
can conclude that tree-like Frege+∀red is exponentially weaker than dag-like
Frege+∀red (both in the version with 0/1-reduction), whereas the latter is
equivalent to tree-like Frege+∀red and dag-like Frege+∀red where universal
reduction substitutes Boolean formulas.

4. Characterising tree-like Frege+∀red and EF+∀red lower bounds

In [11], a characterisation of superpolynomial lower bounds for Frege+∀red
and EF+∀red was established. By giving a normal form for proofs in these
proof systems, into which any proof can be efficiently transformed, it was
shown that any lower bounds on (dag-like) Frege+∀red or EF+∀red proofs
are a result of lower bounds on propositional proofs, or circuit complexity
lower bounds.
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The lower bound and consequent separation shown in Corollary 8 demon-
strates that this characterisation does not hold for tree-like Frege+∀red or
tree-like EF+∀red. However, with a variation of the normal form, we can ex-
tend this characterisation to these tree-like systems, with any lower bounds
not characterised by propositional or circuit complexity lower bounds being
the result of a strategy size lower bound. Similarly to the characterisation of
[11], our characterisation also holds for C-Frege+∀red for circuit classes such
as AC0 and TC0 with the circuit lower bounds for the corresponding circuit
class C, but for clarity we refer only to Frege+∀red and EF+∀red throughout
this section.

It is known that circuits computing winning strategies for the universal
player can be constructed in polynomial time from a Frege+∀red or EF+∀red
refutation π [4]. However, the construction of these circuits uses a different
algorithm, possibly resulting in a different winning strategy from that con-
structed by the round-based algorithm. To give a normal form for tree-like
proofs, we begin by extending this strategy extraction result to show that in
the case of a tree-like Frege+∀red or EF+∀red proof, we can ensure that these
circuits compute the winning strategy produced by the strategy extraction
algorithm as given in Definition 1.

Lemma 9. Let π be a tree-like Frege+∀red (resp. tree-like EF+∀red) refu-
tation. There are formulas (resp. circuits) Ci with inputs {x1, u1, . . . , xi} of
size O(|π|2) computing the strategy for ui extracted from π by the strategy
extraction algorithm in Definition 1.

Proof. A decision list for a Boolean function is a sequence of lines of the
form ‘if C then b, else . . . ’ with the circuits C in some class C and b ∈ {0, 1}.
Given a decision list for ui with circuits in NC1 (or P/poly), there is a formula
(or circuit) computing the same function of size polynomial in that of the
decision list (for details, see [4]). We therefore reduce the problem to finding
a suitable decision list for ui.

Furthermore, for a tree-like proof π, the construction of παi depends only
on the lines selected at each round by the strategy extraction algorithm, and
is independent of the precise assignment α. That is, for each line L and each
i ≥ lev(L), we can construct a proof πLi such that for any α ∈ 〈X〉 where
Lαi = L, παi = πLi .

The proof πLi contains all lines L′ such that L′ �π L, lev(L′) > i and for
any L′′ with L′ �π L′′ �π L, lev(L′′) > i. This is because for any line L′ with
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lev(L′) ≤ i which has L as a descendant, it must be the case that L′[α] = >
for any assignment α which chooses L at round i.

We can now construct decision lists for each variable ui ∈ U . Let L ∈ π
be a line such that lev(L) ≤ i, i.e. all variables in L are assigned by the ith
round. We construct a conjunction CL

i of lines of π and their negations, all
with level at most i, which is a sufficient and necessary condition to ensure
that the strategy extraction algorithm selects L in the ith round.

Define C⊥0 = >. For i > 0, there is a unique line M which must be
selected at round i − 1 in order to select L in the ith round; specifically,
this is the first descendant of L with level i− 1. Having chosen M at round
i− 1, the restricted proof is therefore πMi−1, and so to choose L at round i the
algorithm must verify that L evaluates to ⊥, and also verify that no lines in
πMi−1 preceding L evaluate to ⊥. The set of lines the algorithm considers at
this round is therefore LLi = {L′ ∈ πMi−1 : L′ <π L, lev(L′) = i}, resulting in
the conjunction

CL
i = CM

i−1 ∧
∧

L′∈LLi

L′ ∧ ¬L. (1)

For each line L ∈ π with lev(L) ≤ i, we can add to the decision list for
ui the line

if CL
i then bL

where bL is the value assigned to ui by the strategy extraction algorithm if
L is the line at the root of παi . It is clear that this decision list computes the
same strategy as given by the algorithm. Furthermore, each line of π can
only appear in one polarity in the conjunction CL

i , and the number of lines
in the decision list for ui is at most the number of lines in π. The size of
the decision list, and therefore the size of the circuit constructed from it, is
O(|π|2).

Having shown the existence of small circuits computing this strategy, we
can now use them to define the normal form for tree-like Frege+∀red and
EF+∀red proofs which gives our characterisation.

This normal form is based on the normal form used in [11] to provide a
characterisation for dag-like Frege+∀red and EF+∀red proofs. We begin in
the same way, using the fact that the Ci form a winning strategy for the
universal variables to derive the line

∨n
i=1(ui 6↔ Ci). However, instead of

deriving it only once, we derive a copy of the line for each response β given
by the winning strategy described by the Ci. The normal form proof proceeds
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by reducing each uj in turn according to the corresponding response for that
line, and then combining lines whose responses first differ on uj to derive
a copy of

∨j−1
i=1 (ui 6↔ Ci) for each response to the variables u1, . . . , uj−1,

ultimately deriving the empty disjunction after reducing u1.
Definition 10 formalises this form of proof; in Lemma 11 we show how to

efficiently transform any tree-like Frege+∀red or EF+∀red proof into such a
normal form.

Definition 10 (Normal form for proofs). Let Φ = Π · φ be a QBF, and
let the circuits Ci compute a winning universal strategy for the variables
ui. Define S : 〈X〉 → 〈U〉 to be the strategy computed by the Ci, with
rng(S) = {β1, . . . , βs}. Since the Ci form a winning strategy for Φ, it is clear
that

∧n
i=1(ui ↔ Ci) |= ¬φ, and so φ |=

∨n
i=1(ui 6↔ Ci).

The proof begins by deriving (propositionally)
∨n
i=1(ui 6↔ Ci) ∨ ¬βj for

each 1 ≤ j ≤ s, where ¬βj is the disjunction of those universal literals falsi-
fied by βj. Each line is now ∀-reduced by the substitution un/βj(un). The
lines

∨n−1
i=1 (ui 6↔ Ci) ∨ ¬βn−1j can then be constructed either by a proposi-

tional inference from a single line if βj is the unique extension of βn−1j in
rng(S), or by combining the lines corresponding to the two extensions of
βn−1j otherwise. By repeating this process for each universal variable from
un to u1, we eventually derive ⊥.

Given a proof π, Lemma 9 produced circuits of size |π|O(1) which compute
a strategy S with |rng(S)| ≤ |π|. By using these circuits as the circuits Ci
in the normal form, we are able to construct from π a proof in this normal
form with only a polynomial increase in size.

Lemma 11. Given a QBF Φ = Π·φ, and a tree-like Frege+∀red (respectively
tree-like EF+∀red) proof π of Φ , there is a tree-like Frege+∀red (respectively

tree-like EF+∀red) proof of Φ of the form in Definition 10 with size |π|O(1).

Proof. Let the circuits Ci be those constructed in Lemma 9. These circuits
have size |π|O(1), and by applying Proposition 4 it is clear that the corre-

sponding strategy S satisfies |rng(S)| = |π|O(1). As dag-like and tree-like
propositional Frege systems are equivalent [16], it suffices to show that each
of the propositional inferences described in Definition 10 has a dag-like proof
of size |π|O(1).

To first derive
∨n
i=1(ui 6↔ Ci) ∨ ¬β for some β ∈ rng(S), we construct

from π a proof that φ ∧ β ∧
∧n
i=1(ui ↔ Ci) → ⊥ by deriving for each line

13



L ∈ π, the line ¬CL = ¬CL
j where CL

j is as in (1) and j = lev(L). For the
final line ⊥, ¬C⊥0 = ⊥ so this is indeed a derivation of ⊥.

To begin, note that if we have derived ¬CM for each M <π L, then it
suffices to derive (a subclause of) ¬CL

i for any i ≥ lev(L), since ¬CL
i =

¬CL ∨
∨
k ¬Mk for those lines Mk ≺π L checked by the algorithm between

choosing L at round lev(L) and round i. Each CMk contains CL, so each
instance of ¬Mk can be ‘resolved’ away in turn using ¬CMk to obtain ¬CL.
As k ≤ |π|, this requires size |π|O(1).

First, suppose L is introduced as an axiom in π, i.e. L is a clause in φ.
For any line L, the disjunction ¬CL contains L so it is clear that there is a
derivation of CL from the axiom L, and hence from the clauses of Φ, which
has size O(|CL|).

If L is derived from L′ by a ∀-reduction on ui which agrees with β, then
CL
i+1 is identical to CL′

= CL′
i+1 with ¬L′ replaced by L′. Using β, it is

straightforward to derive L from L′ and thus deduce from ¬CL′
a stronger

clause than ¬CL
i+1.

If L is derived by a ∀-reduction on ui which does not agree with β, then
there is a derivation of ¬CL

i from β ∧ (ui ↔ Ci) and the already derived
lines ¬CM for M <π L. Since Ci is a decision list, if each CM is false but
CL
i is true, it requires O(|Ci|) lines to evaluate the decision list and conclude

that Ci 6↔ β(ui), from which a contradiction can easily be derived using
β ∧ (ui ↔ Ci).

Lastly, suppose L is derived by a propositional rule from L1 and L2.
Without loss of generality, we can assume that L1 <π L2 and that lev(L1) ≤
lev(L2) = l. Until choosing L1, the paths chosen for L1 and L2 are identical,
so apart from ¬L1, all conjuncts in CL1 appear in CL2 . It is clear that
lev(L) ≤ lev(L2). Furthermore, CL

l contains all conjuncts in CL2 except
¬L2, as we assume without loss of generality that L is the next line derived
after L2. Since ¬CL

l contains L as a disjunct, we can derive a subclause of
¬CL

l in size linear in |CL2| by using L1 in ¬CL1 and L2 in ¬CL2 to derive L.
Having derived

∨n
i=1(ui 6↔ Ci) ∨ ¬β for each response β, we now turn

to the deduction of ⊥ from these axioms. Since (ui ↔ β(ui)) ∧ (ui ↔ Ci)
is equivalent to Ci ↔ β(ui), constructing

∨j−1
i=1 (ui 6↔ Ci) ∨ ¬βj−1 from the

corresponding lines for two different extensions of βj−1 on uj requires only
proving that Cj ∧ ¬Cj |= ⊥, which has a proof of size O(|Cj|).

In the case where there is a unique extension of βj−1, it is sufficient
to prove

∧j
i=1(Ci ↔ β(ui)) from

∧j−1
i=1 (Ci ↔ β(ui)). Construct for each i

in turn the disjunction of the CL
i which would result in the response βi.
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This can be constructed in size |Ci|O(1) at each stage. For each CL
j−1 in the

final disjunction, there is a linear-size proof that CL
j−1 |= (Cj ↔ β(uj)),

by comparing CL
j−1 with each line in the decision list for uj, and showing

that each line in the decision list which would return ¬β(uj) is falsified by
CL
j−1.

To show superpolynomial lower bounds on the size of tree-like Frege+∀red
proofs, it is therefore sufficient to show such lower bounds on proofs of the
form in Definition 10. We use this to provide a characterisation of such lower
bounds, similar to that shown for Frege+∀red in [11].

Theorem 12. Each of the following is sufficient to give a superpolynomial
lower bound on tree-like Frege+∀red (resp. tree-like EF+∀red) proofs:

1. a propositional lower bound on Frege (resp. Extended Frege);

2. a lower bound on strategy size;

3. a lower bound on NC1 (resp. P/poly) circuits computing S for any win-
ning strategy S with polynomial-size range.

Moreover, any superpolynomial lower bound on tree-like Frege+∀red (resp.
tree-like EF+∀red) is due to one of the above lower bounds.

Proof. We just argue for Frege+∀red; the EF+∀red case is analogous. First
we show that each of items 1 to 3 is sufficient for a superpolynomial lower
bound.

For item 1, it is clear that a Frege lower bound for propositional for-
mulas φn implies a Frege+∀red lower bound for the existentially quantified
version of φn.

For item 2, if Φn is a sequence of QBFs with a superpolynomial lower
bound on ρ(Φn), then this is also a lower bound on the size of a tree-like
Frege+∀red proof of Φn by Theorem 7.

To see that item 3 is sufficient, let Φn be a sequence of QBFs such that
ρ(Φn) is small, but there are no polynomial-size circuits in NC1 computing a
universal winning strategy with small range. By Lemma 9, we can extract
from a tree-like Frege+∀red proof π circuits of size |π|O(1) which compute a
winning strategy S with |rng(S)| ≤ |π|. This provides a superpolynomial
lower bound on |π|.

To argue that each lower bound for Frege+∀red arises from items 1 to 3,
assume that Φn is a sequence of QBFs hard for Frege+∀red, but for which
neither item 2 nor item 3 holds. Then there exist circuits Ci of size polynomial
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in n computing a strategy S such that |rng(S)| is polynomial in n. Use these
circuits to construct a proof π of the form given in Definition 10. Since |Ci|
and |rng(S)| are polynomial, any lower bound on |π| is due to a propositional
lower bound on one of the propositional subderivations in π.

Note that (1) and (3) are almost identical to the characterisation of lower
bounds on dag-like Frege+∀red from [11]. Indeed, if a tree-like Frege+∀red
lower bound falls only under (3), the formulas can be easily modified to
force the universal player’s response to belong to rng(S) for some winning
strategy S with a polynomial-size range. The circuit lower bound in (3) then
translates into a lower bound on any circuit computing a winning strategy,
giving a lower bound for dag-like Frege+∀red.

The key consequence of Theorem 12 therefore is this: not only does strat-
egy size provide a simple method for producing tree-like Frege+∀red lower
bounds, it is the only way to show such lower bounds which does not entail
showing a lower bound for dag-like Frege+∀red.

5. Conclusion

By examining more closely the running of the round-based strategy ex-
traction algorithm, we have shown how the structure of the proof relates
to the trace of the algorithm. The simple structure of tree-like proofs then
gives a simple lower bound on the size of these proofs. Moreover, extending
a previous normal form for Frege+∀red and EF+∀red proofs to the tree-like
version, we see that lower bounds of this form are the only lower bounds for
tree-like Frege+∀red and EF+∀red which do not provide lower bounds for the
corresponding dag-like systems.

On a broader scale, our results highlight an important distinction between
two different approaches to the ∀-reduction rule. In many of the most studied
proof systems, such as tree-like or dag-like QU-Res, and dag-like Frege+∀red,
restricting ∀-reductions to 0-1 substitutions rather than any suitable for-
mula defines an equivalent system. However, this does not hold for tree-like
Frege+∀red, and for tree-like versions of several proof systems with compar-
atively expressive lines. In such proof systems, the choice of ∀-reduction rule
must be considered more carefully. This separation may also limit the effec-
tiveness of practical implementations corresponding to proof systems with a
0-1 ∀-reduction rule, including many modern QBF solvers.

It has been observed that in the case of dag-like systems, the Frege+∀red
characterisation of [11] does not hold for weaker systems such as QU-Res [20].

16



However, the only known examples which do not fit this characterisation have
large strategy size. It is thus a natural question whether the characterisation
in Theorem 12 extends to weaker tree-like P+∀red systems.
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[16] J. Kraj́ıček, Bounded Arithmetic, Propositional Logic, and Complexity
Theory, Vol. 60 of Encyclopedia of Mathematics and Its Applications,
Cambridge University Press, Cambridge, 1995.

[17] M. Davis, G. Logemann, D. W. Loveland, A machine program for
theorem-proving, Commun. ACM 5 (7) (1962) 394–397.

[18] M. Davis, H. Putnam, A computing procedure for quantification theory,
Journal of the ACM 7 (1960) 210–215.

[19] H. Chen, Proof complexity modulo the polynomial hierarchy: Under-
standing alternation as a source of hardness, ACM TOCT 9 (3) (2017)
15:1–15:20.

18



[20] O. Beyersdorff, L. Hinde, J. Pich, Reasons for hardness in QBF proof
systems, in: Conference on Foundations of Software Technology and
Theoretical Computer Science, 2017, pp. 14:1–14:15.

[21] M. Janota, J. Marques-Silva, Expansion-based QBF solving versus Q-
resolution, Theor. Comput. Sci. 577 (2015) 25–42.

19


